Weighted Central Moment for Pattern Recognition: Derivation, Analysis of Invarianceness, and Simulation Using Letter Characters

R. P. Pamungkas, S. Shamsuddin
{"title":"Weighted Central Moment for Pattern Recognition: Derivation, Analysis of Invarianceness, and Simulation Using Letter Characters","authors":"R. P. Pamungkas, S. Shamsuddin","doi":"10.1109/AMS.2009.124","DOIUrl":null,"url":null,"abstract":"Geometric Moment Invariant (GMI) is well known approach in pattern recognition. One of the weaknesses of GMI is in its invarianceness, where data or points concentrated near to the center-of-mass are neglected because of the existence of data or points that are far away from the center-of-mass. To solve this problem, Balslev et.al has modified GMI method by adding a weighting function into GMI’s formula; thus we called it as Weighted Central Moment (WCM). WCM can increase noise tolerance for rotation/translation independent pattern recognition. In this paper, we present simulation results for characters with adjustable parameter α equal to 2/Rg. The experiments reveal that WCM yields intra-class results for identifying picture with different orientations. It also illustrates better inter-class distances in recognizing letter “g” and “q” compared to GMI method.","PeriodicalId":6461,"journal":{"name":"2009 Third Asia International Conference on Modelling & Simulation","volume":"58 1","pages":"102-106"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third Asia International Conference on Modelling & Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2009.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Geometric Moment Invariant (GMI) is well known approach in pattern recognition. One of the weaknesses of GMI is in its invarianceness, where data or points concentrated near to the center-of-mass are neglected because of the existence of data or points that are far away from the center-of-mass. To solve this problem, Balslev et.al has modified GMI method by adding a weighting function into GMI’s formula; thus we called it as Weighted Central Moment (WCM). WCM can increase noise tolerance for rotation/translation independent pattern recognition. In this paper, we present simulation results for characters with adjustable parameter α equal to 2/Rg. The experiments reveal that WCM yields intra-class results for identifying picture with different orientations. It also illustrates better inter-class distances in recognizing letter “g” and “q” compared to GMI method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模式识别的加权中心矩:推导、不变性分析和使用字母字符的模拟
几何矩不变(GMI)方法是模式识别领域的一种常用方法。GMI的缺点之一是其不变性,即由于存在远离质心的数据或点,而忽略了集中在质心附近的数据或点。为了解决这一问题,Balslev等人对GMI方法进行了改进,在GMI公式中加入了一个加权函数;因此我们称之为加权中心矩(WCM)。WCM可以提高旋转/平移独立模式识别的噪声容忍度。本文给出了参数α为2/Rg可调字符的仿真结果。实验结果表明,WCM在识别不同方向的图像时能产生类内结果。它还说明了与GMI方法相比,在识别字母“g”和“q”方面有更好的类间距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Transparent Classification Model Using a Hybrid Soft Computing Method Study on the Performance of Tag-Tag Collision Avoidance Algorithms in RFID Systems Cross Layer Design of Wireless LAN for Telemedicine Application Jawi Character Speech-to-Text Engine Using Linear Predictive and Neural Network for Effective Reading Advances in Supply Chain Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1