Norah W. Aljuryyed, A. M. A. Moajil, S. Alghamdi, Sajjad Aldarweesh
{"title":"Evaluation of High Dissolving-Power Retarded Acid Recipes for Carbonate Acidizing","authors":"Norah W. Aljuryyed, A. M. A. Moajil, S. Alghamdi, Sajjad Aldarweesh","doi":"10.2118/205542-ms","DOIUrl":null,"url":null,"abstract":"\n Development of retarded acid recipes that can have both adequate dissolving power and controllable reaction rate is desired to maximize the effectiveness of matrix stimulation treatments for oil and gas wells. Hydrochloric acid (HCl) has high dissolving power, however, the reaction rate with carbonate rock is uncontrollable and can cause face dissolution. Organic acids have low dissolving power and controllable reaction rate. The objective of this paper was to compare the effectiveness of three low viscosity retarded acid recipes with dissolving powers of 15 wt% and >20 wt% HCl equivalent.\n The examined acid recipes were 15/28 wt% emulsified acids, retarded acid recipes #1, #2 and #3, and 15/26 wt% HCl. The emulsified acids were at 30:70 ratio of diesel to acid. The retarded acid recipes were prepared at different dissolving power. Retarded acid recipe #3 was equivalent to 15 wt% HCl while retarded acid recipes #1 and #2 were equivalent to >20 wt% HCl.\n The calcite disc dissolution rate with retarded acids #1 and #2 was significantly lower than 26 wt% HCl and comparable to 15 wt% HCl at 75°F. The solubility of calcite discs in the retarded acid recipe #3 showed acid retardation higher than retarded acid recipes #1 and #2. The corrosion rate of retarded acid recipes #1 and #2 were 0.003-0.015 lb/ft2 at 250°F and 6 hrs, lower than both examined 26-28 wt% HCl and emulsified acids. The pitting indices of retarded acid recipes #1, #2, and #3 were 4, 2, and 1 respectively at 300°F. The pore volumes to breakthrough (PVBT) of retarded acid recipes #1 and #2 were slightly higher than retarded acid recipes #3 at 200°F. The PVBT values for 15 wt% and 28 wt% emulsified acid was comparable to retarded acid recipes #1, #2, and #3, confirming their retardation was effective.","PeriodicalId":10970,"journal":{"name":"Day 1 Tue, October 12, 2021","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, October 12, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205542-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Development of retarded acid recipes that can have both adequate dissolving power and controllable reaction rate is desired to maximize the effectiveness of matrix stimulation treatments for oil and gas wells. Hydrochloric acid (HCl) has high dissolving power, however, the reaction rate with carbonate rock is uncontrollable and can cause face dissolution. Organic acids have low dissolving power and controllable reaction rate. The objective of this paper was to compare the effectiveness of three low viscosity retarded acid recipes with dissolving powers of 15 wt% and >20 wt% HCl equivalent.
The examined acid recipes were 15/28 wt% emulsified acids, retarded acid recipes #1, #2 and #3, and 15/26 wt% HCl. The emulsified acids were at 30:70 ratio of diesel to acid. The retarded acid recipes were prepared at different dissolving power. Retarded acid recipe #3 was equivalent to 15 wt% HCl while retarded acid recipes #1 and #2 were equivalent to >20 wt% HCl.
The calcite disc dissolution rate with retarded acids #1 and #2 was significantly lower than 26 wt% HCl and comparable to 15 wt% HCl at 75°F. The solubility of calcite discs in the retarded acid recipe #3 showed acid retardation higher than retarded acid recipes #1 and #2. The corrosion rate of retarded acid recipes #1 and #2 were 0.003-0.015 lb/ft2 at 250°F and 6 hrs, lower than both examined 26-28 wt% HCl and emulsified acids. The pitting indices of retarded acid recipes #1, #2, and #3 were 4, 2, and 1 respectively at 300°F. The pore volumes to breakthrough (PVBT) of retarded acid recipes #1 and #2 were slightly higher than retarded acid recipes #3 at 200°F. The PVBT values for 15 wt% and 28 wt% emulsified acid was comparable to retarded acid recipes #1, #2, and #3, confirming their retardation was effective.