Modeling and controller design for the multi-input PV/wind charger

Cheng-Wei Chen, Kun-Hung Chen, Yaow-Ming Chen
{"title":"Modeling and controller design for the multi-input PV/wind charger","authors":"Cheng-Wei Chen, Kun-Hung Chen, Yaow-Ming Chen","doi":"10.1109/EPE.2014.6910964","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to propose a multi-input converter (MIC) for hybrid PV/wind power charger application which can simplify the power system, reduce the cost and deliver continuous power with higher reliability to the load. The proposed MIC consists of a forward-type pulsating voltage source cell (PVSC) and a buck-boost prime converter can realize the maximum power point tracking (MPPT) function for each PV/wind source. Moreover, due to the isolated configuration, the MIC can adopt PV/wind power sources with larger operation voltage difference. In this paper, the small-signal ac model is derived and the controller design is developed. Computer simulations and experimental results are presented to verify the accuracy of the proposed small signal ac model and the performance of the proposed MIC.","PeriodicalId":6508,"journal":{"name":"2014 16th European Conference on Power Electronics and Applications","volume":"95 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th European Conference on Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPE.2014.6910964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The objective of this paper is to propose a multi-input converter (MIC) for hybrid PV/wind power charger application which can simplify the power system, reduce the cost and deliver continuous power with higher reliability to the load. The proposed MIC consists of a forward-type pulsating voltage source cell (PVSC) and a buck-boost prime converter can realize the maximum power point tracking (MPPT) function for each PV/wind source. Moreover, due to the isolated configuration, the MIC can adopt PV/wind power sources with larger operation voltage difference. In this paper, the small-signal ac model is derived and the controller design is developed. Computer simulations and experimental results are presented to verify the accuracy of the proposed small signal ac model and the performance of the proposed MIC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多输入光伏/风力充电器的建模与控制器设计
本文的目标是提出一种用于光伏/风电混合充电的多输入转换器(MIC),它可以简化电力系统,降低成本,并向负载提供更高可靠性的连续电力。所提出的MIC由前向脉动电压源电池(PVSC)和降压升压素变换器组成,可实现每个光伏/风力源的最大功率点跟踪(MPPT)功能。此外,由于隔离配置,MIC可以采用运行电压差较大的光伏/风力电源。本文推导了小信号交流模型,并进行了控制器设计。计算机仿真和实验结果验证了所提出的小信号交流模型的准确性和所提出的MIC的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of turn-OFF transient energy in IGBT controlled silicon PiN diodes Multi-reference frame based PLL for single phase systems in voltage distorted grids New aspects on analyzing ZVS conditions for converters using super-junction Si and wide bandgap SiC and GaN power FETs Unidirectional fast switching non-isolated 100 kW fuel cell boost converter Obal optimization of hybrid electrical system to decrease fuel consumption or operating cost
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1