An efficient analysis of crop yield prediction using Hadoop framework based on random forest approach

Shriya Sahu, M. Chawla, N. Khare
{"title":"An efficient analysis of crop yield prediction using Hadoop framework based on random forest approach","authors":"Shriya Sahu, M. Chawla, N. Khare","doi":"10.1109/CCAA.2017.8229770","DOIUrl":null,"url":null,"abstract":"In the growth of Information T echnology, Big data come forth as a blazing topic. The main source of human survival depends on agriculture; where it needs a key contribution in the field of crop data analysis. This paper gives a purpose about how to find experiences from accuracy agriculture information through big data approach. In this way, gathering the valuable data in an effective way drives a framework towards major computational challenges in crop analysis where information is remotely gathered. For the storage purpose of huge data availability in agriculture, we are intending Hadoop framework for our work to store a huge volume of crop data. This work gives a better prediction for the farmers to plant which kind of crops to their farm field based on their soil content to improve the productivity. The random forest algorithm is integrated with the MapReduce programming model in Hadoop framework.","PeriodicalId":6627,"journal":{"name":"2017 International Conference on Computing, Communication and Automation (ICCCA)","volume":"71 1","pages":"53-57"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing, Communication and Automation (ICCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAA.2017.8229770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

In the growth of Information T echnology, Big data come forth as a blazing topic. The main source of human survival depends on agriculture; where it needs a key contribution in the field of crop data analysis. This paper gives a purpose about how to find experiences from accuracy agriculture information through big data approach. In this way, gathering the valuable data in an effective way drives a framework towards major computational challenges in crop analysis where information is remotely gathered. For the storage purpose of huge data availability in agriculture, we are intending Hadoop framework for our work to store a huge volume of crop data. This work gives a better prediction for the farmers to plant which kind of crops to their farm field based on their soil content to improve the productivity. The random forest algorithm is integrated with the MapReduce programming model in Hadoop framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林方法的Hadoop框架作物产量预测分析
在信息技术的发展过程中,大数据成为一个热门话题。人类生存的主要来源是农业;它需要在作物数据分析领域做出关键贡献。本文就如何利用大数据方法从精准农业信息中挖掘经验进行了探讨。通过这种方式,以有效的方式收集有价值的数据推动了一个框架,以应对远程收集信息的作物分析中的主要计算挑战。出于农业中海量数据可用性的存储目的,我们打算在工作中使用Hadoop框架来存储海量的农作物数据。这项工作为农民根据其土壤含量更好地预测种植何种作物以提高生产力提供了依据。随机森林算法与Hadoop框架中的MapReduce编程模型相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment analysis on product reviews BSS: Blockchain security over software defined network A detailed analysis of data consistency concepts in data exchange formats (JSON & XML) CBIR by cascading features & SVM ADANS: An agriculture domain question answering system using ontologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1