Absorption of water in silicon gel

C. Lesaint, Celine Babault, K. Liland, L. Lundgaard
{"title":"Absorption of water in silicon gel","authors":"C. Lesaint, Celine Babault, K. Liland, L. Lundgaard","doi":"10.1109/ICDL.2014.6893159","DOIUrl":null,"url":null,"abstract":"Water is an important enemy of an electric insulation system. Water vapour can be absorbed by electrical insulation materials (liquids or solid) and migrate in between the materials to achieve the same relative humidity equilibrium everywhere. Water can reduce withstand voltage of the insulation liquid, initiate partial discharges in wet solids and increase dielectric losses in solids like epoxies, gels, PCB cards and produce dielectric heating. In insulation liquid filled system the water content of the liquid should never be allowed to reach saturation. One failure scenario is when typical oil with significant water content is cooled to a temperature where the water content is above the saturation content, and then water will precipitate and may condensate at cold insulating gaps and give breakdown due to electric field enhancement. Gel samples were investigated in climate chambers in various conditions of humidity and temperature until an equilibrium was reached. Diffusion and absorption of water were measured at different intervals. The aim of the study was to find an appropriate technique/methodology to follow the absorption of moisture in gel as a function of time. Several techniques were tested to determine the moisture content in the gel such as Karl Fischer, weight differences measurement, freeze drying and capacitive relative humidity sensors giving contrasted results. The weight difference method showed “anomaly” indicating bound water, even after equilibrium (measured with the other methods) was reached the weight continued to increase. The use of humidity sensors covered by gel appears to be the most reliable technique.","PeriodicalId":6523,"journal":{"name":"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)","volume":"3 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2014.6893159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Water is an important enemy of an electric insulation system. Water vapour can be absorbed by electrical insulation materials (liquids or solid) and migrate in between the materials to achieve the same relative humidity equilibrium everywhere. Water can reduce withstand voltage of the insulation liquid, initiate partial discharges in wet solids and increase dielectric losses in solids like epoxies, gels, PCB cards and produce dielectric heating. In insulation liquid filled system the water content of the liquid should never be allowed to reach saturation. One failure scenario is when typical oil with significant water content is cooled to a temperature where the water content is above the saturation content, and then water will precipitate and may condensate at cold insulating gaps and give breakdown due to electric field enhancement. Gel samples were investigated in climate chambers in various conditions of humidity and temperature until an equilibrium was reached. Diffusion and absorption of water were measured at different intervals. The aim of the study was to find an appropriate technique/methodology to follow the absorption of moisture in gel as a function of time. Several techniques were tested to determine the moisture content in the gel such as Karl Fischer, weight differences measurement, freeze drying and capacitive relative humidity sensors giving contrasted results. The weight difference method showed “anomaly” indicating bound water, even after equilibrium (measured with the other methods) was reached the weight continued to increase. The use of humidity sensors covered by gel appears to be the most reliable technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在硅胶中吸收水分
水是电绝缘系统的一个重要敌人。水蒸气可以被电绝缘材料(液体或固体)吸收,并在材料之间迁移,以达到各处相同的相对湿度平衡。水可以降低绝缘液的耐压,引起湿固体中的局部放电,增加环氧树脂、凝胶、PCB卡等固体中的介电损耗,并产生介电加热。在绝缘充液系统中,不应使液体的含水量达到饱和。一种失效情况是,当含水较大的典型油被冷却到含水量高于饱和含量的温度时,水会沉淀,并可能在冷绝缘间隙处凝结,并由于电场增强而发生击穿。凝胶样品在各种湿度和温度条件下在气候室中进行研究,直到达到平衡。在不同的时间间隔测量水的扩散和吸收。本研究的目的是找到一种合适的技术/方法来跟踪凝胶中水分的吸收作为时间的函数。测试了几种技术来确定凝胶中的水分含量,如卡尔费舍尔,重量差测量,冷冻干燥和电容相对湿度传感器给出对比结果。重量差法显示“异常”,表明束缚水,即使达到平衡(用其他方法测量),重量仍在继续增加。使用凝胶覆盖的湿度传感器似乎是最可靠的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determination of the thermal endurance of transformer oil by structural analyses Energy spectrum of vacancies and nanobubbles in condense matter: Crystal melting Methods for monitoring age-related changes in transformer oils Electrohydrodynamic motion due to space-charge limited injection of charges in cyclohexane The effect of surface treatment of silica nanoparticles on the breakdown strength of mineral oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1