N. K. LeRoux, S. K. Frey, D. R. Lapen, J. A. Guimond, B. L. Kurylyk
{"title":"Mega-Tidal and Surface Flooding Controls on Coastal Groundwater and Saltwater Intrusion Within Agricultural Dikelands","authors":"N. K. LeRoux, S. K. Frey, D. R. Lapen, J. A. Guimond, B. L. Kurylyk","doi":"10.1029/2023wr035054","DOIUrl":null,"url":null,"abstract":"Climate change will increase sea levels, driving saltwater into coastal aquifers and impacting coastal communities and land use viability. Coastal aquifers are also impacted by tides that control groundwater-ocean interactions and maintain an “upper saline plume” (USP) of brackish groundwater. Coastal dikes are designed to limit the surface impacts of high-amplitude tides, but, due to ongoing sea-level rise (SLR), low-lying dikelands and underlying aquifers are becoming increasingly vulnerable to flooding from high tides and storm surges. This study combines field observations with numerical modeling to investigate ocean-aquifer mixing and future saltwater intrusion dynamics in a mega-tidal (tidal range >8 m) dikeland along the Bay of Fundy in Atlantic Canada. Field data revealed strong connectivity between the ocean and coastal aquifer, as evidenced by pronounced tidal oscillations in deeper groundwater heads and an order of magnitude intra-tidal change in subsurface electrical resistivity. Numerical model results indicate that SLR and surges will force the migration of the USP landward, amplifying salinization of freshwater resources. Simulated storm surges can overtop the dike, contaminating agricultural soils. The presence of dikes decreased salinization under low surge scenarios, but increased salinization under larger overtopping scenarios due to landward ponding of seawater behind the dike. Mega-tidal conditions maintain a large USP and impact aquifer freshening rates. Results highlight the vulnerability of terrestrial soil landscapes and freshwater resources to climate change and suggest that the subsurface impacts of dike management decisions should be considered in addition to protection measures associated with surface saltwater intrusion processes.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"59 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr035054","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change will increase sea levels, driving saltwater into coastal aquifers and impacting coastal communities and land use viability. Coastal aquifers are also impacted by tides that control groundwater-ocean interactions and maintain an “upper saline plume” (USP) of brackish groundwater. Coastal dikes are designed to limit the surface impacts of high-amplitude tides, but, due to ongoing sea-level rise (SLR), low-lying dikelands and underlying aquifers are becoming increasingly vulnerable to flooding from high tides and storm surges. This study combines field observations with numerical modeling to investigate ocean-aquifer mixing and future saltwater intrusion dynamics in a mega-tidal (tidal range >8 m) dikeland along the Bay of Fundy in Atlantic Canada. Field data revealed strong connectivity between the ocean and coastal aquifer, as evidenced by pronounced tidal oscillations in deeper groundwater heads and an order of magnitude intra-tidal change in subsurface electrical resistivity. Numerical model results indicate that SLR and surges will force the migration of the USP landward, amplifying salinization of freshwater resources. Simulated storm surges can overtop the dike, contaminating agricultural soils. The presence of dikes decreased salinization under low surge scenarios, but increased salinization under larger overtopping scenarios due to landward ponding of seawater behind the dike. Mega-tidal conditions maintain a large USP and impact aquifer freshening rates. Results highlight the vulnerability of terrestrial soil landscapes and freshwater resources to climate change and suggest that the subsurface impacts of dike management decisions should be considered in addition to protection measures associated with surface saltwater intrusion processes.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.