Arabic (Indian) Handwritten Digits Recognition Using Multi feature and KNN Classifier

A. Hassan
{"title":"Arabic (Indian) Handwritten Digits Recognition Using Multi feature and KNN Classifier","authors":"A. Hassan","doi":"10.29196/JUB.V26I4.679","DOIUrl":null,"url":null,"abstract":"This paper presents an Arabic (Indian) handwritten digit recognition system based on combining multi feature extraction methods, such a upper_lower profile, Vertical _ Horizontal projection and Discrete Cosine Transform (DCT) with Standard Deviation σi called (DCT_SD) methods. These features are extracted from the image after dividing it by several blocks. KNN classifier used for classification purpose. This work is tested with the ADBase standard database (Arabic numerals), which consist of 70,000 digits were 700 different writers write it. In proposing system used 60000 digits, images for training phase and 10000 digits, images in testing phase. This work achieved 97.32% recognition Accuracy.","PeriodicalId":17505,"journal":{"name":"Journal of University of Babylon","volume":"55 28","pages":"10-17"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of University of Babylon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29196/JUB.V26I4.679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents an Arabic (Indian) handwritten digit recognition system based on combining multi feature extraction methods, such a upper_lower profile, Vertical _ Horizontal projection and Discrete Cosine Transform (DCT) with Standard Deviation σi called (DCT_SD) methods. These features are extracted from the image after dividing it by several blocks. KNN classifier used for classification purpose. This work is tested with the ADBase standard database (Arabic numerals), which consist of 70,000 digits were 700 different writers write it. In proposing system used 60000 digits, images for training phase and 10000 digits, images in testing phase. This work achieved 97.32% recognition Accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多特征和KNN分类器的阿拉伯(印度)手写体数字识别
本文提出了一种结合上下轮廓、垂直水平投影和标准差σi离散余弦变换(DCT)等多种特征提取方法的阿拉伯(印度)手写体数字识别系统。将图像分成若干块后提取这些特征。KNN分类器用于分类。这项工作是用ADBase标准数据库(阿拉伯数字)进行测试的,该数据库由700个不同的作者编写的70,000个数字组成。该系统在训练阶段使用60000位数字图像,在测试阶段使用10000位数字图像。该工作的识别准确率达到97.32%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Blue Molybdenum Reaction for the Determination of Phosphate in Natural Water and Detergent Samples Polymeric Chitosan/Poly (Vinyl Alcohol) Hybrid Doped with Zinc Oxide Nanoparticles Synthesized and Characterized Using the Electrospun Method The Effects of Head Pose and Face Roundness on Age Progression in Children Faces Design of Fullerene20-thieno[2,3-c]pyrrole-4,6(5H)-dione-fullerene20 for Opto-nonlinear applications: Quantum Mechanical Study Study the Optical Properties of Polyvinyl Alcohol Thick Film Irradiated with Violet Laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1