Learning State Representations for Query Optimization with Deep Reinforcement Learning

Jennifer Ortiz, M. Balazinska, J. Gehrke, S. Keerthi
{"title":"Learning State Representations for Query Optimization with Deep Reinforcement Learning","authors":"Jennifer Ortiz, M. Balazinska, J. Gehrke, S. Keerthi","doi":"10.1145/3209889.3209890","DOIUrl":null,"url":null,"abstract":"We explore the idea of using deep reinforcement learning for query optimization. The approach is to build queries incrementally by encoding properties of subqueries using a learned representation. In this paper, we focus specifically on the state representation problem and the formation of the state transition function. We show preliminary results and discuss how we can use the state representation to improve query optimization using reinforcement learning.","PeriodicalId":92710,"journal":{"name":"Proceedings of the Second Workshop on Data Management for End-to-End Machine Learning. Workshop on Data Management for End-to-End Machine Learning (2nd : 2018 : Houston, Tex.)","volume":"16 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Data Management for End-to-End Machine Learning. Workshop on Data Management for End-to-End Machine Learning (2nd : 2018 : Houston, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209889.3209890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 140

Abstract

We explore the idea of using deep reinforcement learning for query optimization. The approach is to build queries incrementally by encoding properties of subqueries using a learned representation. In this paper, we focus specifically on the state representation problem and the formation of the state transition function. We show preliminary results and discuss how we can use the state representation to improve query optimization using reinforcement learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的查询优化学习状态表示
我们探索了使用深度强化学习进行查询优化的想法。该方法是通过使用学习的表示对子查询的属性进行编码来增量地构建查询。在本文中,我们特别关注状态表示问题和状态转移函数的形成。我们展示了初步结果,并讨论了如何使用状态表示来改进使用强化学习的查询优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling Machine Learning Algorithms on Relational Data with Datalog Towards Interactive Curation & Automatic Tuning of ML Pipelines Avatar: Large Scale Entity Resolution of Heterogeneous User Profiles Learning Efficiently Over Heterogeneous Databases: Sampling and Constraints to the Rescue Proceedings of the Second Workshop on Data Management for End-To-End Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1