Eigenshapes for 3D object recognition in range data

Richard J. Campbell, P. Flynn
{"title":"Eigenshapes for 3D object recognition in range data","authors":"Richard J. Campbell, P. Flynn","doi":"10.1109/CVPR.1999.784728","DOIUrl":null,"url":null,"abstract":"Much of the recent research in object recognition has adopted an appearance-based scheme, wherein objects to be recognized are represented as a collection of prototypes in a multidimensional space spanned by a number of characteristic vectors (eigen-images) obtained from training views. In this paper, we extend the appearance-based recognition scheme to handle range (shape) data. The result of training is a set of 'eigensurfaces' that capture the gross shape of the objects. These techniques are used to form a system that recognizes objects under an arbitrary rotational pose transformation. The system has been tested on a 20 object database including free-form objects and a 54 object database of manufactured parts. Experiments with the system point out advantages and also highlight challenges that must be studied in future research.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"20 1","pages":"505-510 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

Much of the recent research in object recognition has adopted an appearance-based scheme, wherein objects to be recognized are represented as a collection of prototypes in a multidimensional space spanned by a number of characteristic vectors (eigen-images) obtained from training views. In this paper, we extend the appearance-based recognition scheme to handle range (shape) data. The result of training is a set of 'eigensurfaces' that capture the gross shape of the objects. These techniques are used to form a system that recognizes objects under an arbitrary rotational pose transformation. The system has been tested on a 20 object database including free-form objects and a 54 object database of manufactured parts. Experiments with the system point out advantages and also highlight challenges that must be studied in future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于距离数据的三维目标识别特征形状
最近在物体识别方面的许多研究都采用了基于外观的方案,其中待识别的物体被表示为由从训练视图中获得的许多特征向量(特征图像)所跨越的多维空间中的原型集合。在本文中,我们扩展了基于外观的识别方案来处理距离(形状)数据。训练的结果是一组捕捉物体大致形状的“特征面”。这些技术被用来形成一个识别任意旋转姿态变换下的物体的系统。该系统已在一个包含自由曲面对象的20个对象数据库和一个包含54个对象的成品零件数据库上进行了测试。系统的实验表明了该系统的优点,同时也指出了未来研究中需要研究的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1