Novel Gaussian mixture model background subtraction method for detecting moving objects

Xiaofeng Lu, Caidi Xu
{"title":"Novel Gaussian mixture model background subtraction method for detecting moving objects","authors":"Xiaofeng Lu, Caidi Xu","doi":"10.1109/IICSPI.2018.8690428","DOIUrl":null,"url":null,"abstract":"Moving object detection is the focus of research and application in the field of computer vision. Background subtraction method is one of the most commonly used methods for moving object detection, in which moving objects in image sequences are detected by comparison of the background model with the current frame. In the process of moving object detection, there are many challenges, such as the interference of clutter background, the influence of illumination, noise and shadow. In this paper, a novel Gaussian mixture model background subtraction method based on wavelet blocks is proposed for the challenge of object detection. This method can not only reduce the influence of illumination, noise and shadow, but also adapt to the dynamic change of natural scene. The contribution lies in the following aspects: (1) A Gaussian background modeling method with less running time is proposed in the background modeling stage. The background is reconstructed based on Gaussian mixture model (GMM) of the mean images of image blocks, aiming to simplify the calculations so as to improve the speed of the corresponding operations. (2) In the foreground detection stage, a wavelet-based de-noising method with the semi-soft threshold function is applied to de-noise the object images of the foreground. Experimental results show that the computational complexity is reduced, while the adaptability and performance are improved by using the proposed method. It was more efficient and robust than traditional approaches.","PeriodicalId":6673,"journal":{"name":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","volume":"1 1","pages":"6-10"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI.2018.8690428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Moving object detection is the focus of research and application in the field of computer vision. Background subtraction method is one of the most commonly used methods for moving object detection, in which moving objects in image sequences are detected by comparison of the background model with the current frame. In the process of moving object detection, there are many challenges, such as the interference of clutter background, the influence of illumination, noise and shadow. In this paper, a novel Gaussian mixture model background subtraction method based on wavelet blocks is proposed for the challenge of object detection. This method can not only reduce the influence of illumination, noise and shadow, but also adapt to the dynamic change of natural scene. The contribution lies in the following aspects: (1) A Gaussian background modeling method with less running time is proposed in the background modeling stage. The background is reconstructed based on Gaussian mixture model (GMM) of the mean images of image blocks, aiming to simplify the calculations so as to improve the speed of the corresponding operations. (2) In the foreground detection stage, a wavelet-based de-noising method with the semi-soft threshold function is applied to de-noise the object images of the foreground. Experimental results show that the computational complexity is reduced, while the adaptability and performance are improved by using the proposed method. It was more efficient and robust than traditional approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的高斯混合模型背景减法检测运动目标方法
运动目标检测是计算机视觉领域研究和应用的热点。背景相减法是一种最常用的运动目标检测方法,通过对比背景模型和当前帧来检测图像序列中的运动目标。在运动目标检测过程中,存在着杂波背景的干扰、光照、噪声和阴影的影响等诸多挑战。针对目标检测的难题,提出了一种基于小波块的高斯混合模型背景减去方法。该方法既能减少光照、噪声和阴影的影响,又能适应自然场景的动态变化。贡献体现在以下几个方面:(1)在背景建模阶段提出了一种运行时间更短的高斯背景建模方法。基于图像块平均图像的高斯混合模型(GMM)重建背景,旨在简化计算从而提高相应操作的速度。(2)在前景检测阶段,采用基于小波的半软阈值去噪方法对前景目标图像进行去噪。实验结果表明,该方法降低了算法的计算复杂度,提高了算法的适应性和性能。它比传统方法更有效、更稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Functional Safety Analysis and Design of Dual-Motor Hybrid Bus Clutch System Methods of Resource Allocation with Conflict Detection Exploration and Application of Sheet Metal Technology on Pit Package Repairing Study on Standardization of Electrolytic Trace Moisture Meter in Safety Construction of CNG Refueling Station The Research and Analysis of Big Data Application on Distribution Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1