Discovering interpretable geo-social communities for user behavior prediction

Hongzhi Yin, Zhiting Hu, Xiaofang Zhou, Hao Wang, Kai Zheng, Nguyen Quoc Viet Hung, S. Sadiq
{"title":"Discovering interpretable geo-social communities for user behavior prediction","authors":"Hongzhi Yin, Zhiting Hu, Xiaofang Zhou, Hao Wang, Kai Zheng, Nguyen Quoc Viet Hung, S. Sadiq","doi":"10.1109/ICDE.2016.7498303","DOIUrl":null,"url":null,"abstract":"Social community detection is a growing field of interest in the area of social network applications, and many approaches have been developed, including graph partitioning, latent space model, block model and spectral clustering. Most existing work purely focuses on network structure information which is, however, often sparse, noisy and lack of interpretability. To improve the accuracy and interpretability of community discovery, we propose to infer users' social communities by incorporating their spatiotemporal data and semantic information. Technically, we propose a unified probabilistic generative model, User-Community-Geo-Topic (UCGT), to simulate the generative process of communities as a result of network proximities, spatiotemporal co-occurrences and semantic similarity. With a well-designed multi-component model structure and a parallel inference implementation to leverage the power of multicores and clusters, our UCGT model is expressive while remaining efficient and scalable to growing large-scale geo-social networking data. We deploy UCGT to two application scenarios of user behavior predictions: check-in prediction and social interaction prediction. Extensive experiments on two large-scale geo-social networking datasets show that UCGT achieves better performance than existing state-of-the-art comparison methods.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"2 1","pages":"942-953"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

Abstract

Social community detection is a growing field of interest in the area of social network applications, and many approaches have been developed, including graph partitioning, latent space model, block model and spectral clustering. Most existing work purely focuses on network structure information which is, however, often sparse, noisy and lack of interpretability. To improve the accuracy and interpretability of community discovery, we propose to infer users' social communities by incorporating their spatiotemporal data and semantic information. Technically, we propose a unified probabilistic generative model, User-Community-Geo-Topic (UCGT), to simulate the generative process of communities as a result of network proximities, spatiotemporal co-occurrences and semantic similarity. With a well-designed multi-component model structure and a parallel inference implementation to leverage the power of multicores and clusters, our UCGT model is expressive while remaining efficient and scalable to growing large-scale geo-social networking data. We deploy UCGT to two application scenarios of user behavior predictions: check-in prediction and social interaction prediction. Extensive experiments on two large-scale geo-social networking datasets show that UCGT achieves better performance than existing state-of-the-art comparison methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为用户行为预测发现可解释的地理社会社区
社交社区检测是社交网络应用领域中一个日益受到关注的领域,目前已经开发了许多方法,包括图划分、潜在空间模型、块模型和谱聚类。大多数现有的工作纯粹集中在网络结构信息上,然而这些信息往往是稀疏的、有噪声的和缺乏可解释性的。为了提高社区发现的准确性和可解释性,我们建议结合用户的时空数据和语义信息来推断用户的社交社区。在技术上,我们提出了一个统一的概率生成模型User-Community-Geo-Topic (UCGT)来模拟由于网络邻近性、时空共现性和语义相似性而导致的社区生成过程。通过精心设计的多组件模型结构和并行推理实现来利用多核和集群的力量,我们的UCGT模型具有表现力,同时保持高效和可扩展性,以适应不断增长的大规模地理社交网络数据。我们将UCGT部署到用户行为预测的两个应用场景中:签到预测和社交互动预测。在两个大型地理社交网络数据集上的大量实验表明,UCGT比现有的最先进的比较方法取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1