M. Tamoor, A. R. Bhatti, Muhammad Farhan, S. Miran, Faakhar Raza, M. Zaka
{"title":"Designing of a Hybrid Photovoltaic Structure for an Energy-Efficient Street Lightning System Using PVsyst Software","authors":"M. Tamoor, A. R. Bhatti, Muhammad Farhan, S. Miran, Faakhar Raza, M. Zaka","doi":"10.3390/engproc2021012045","DOIUrl":null,"url":null,"abstract":"With the depletion of traditional fossil fuels, their disastrous impact on the environment and rising costs, renewable energy sources such as photovoltaic (PV) energy are rapidly emerging as sustainable and clean sources of power generation. The performance of photovoltaic systems is based on different factors such as the type of photovoltaic modules, irradiation potential and geographic location. In this research, PVsyst simulation software is used to design and simulate a hybrid photovoltaic system used to operate energy-efficient street lightning system. The simulation is performed to analyze the monthly/annual energy generated (kWh) by the hybrid system and specific power production (kWh/KWp). Additionally, various PV system losses are also investigated. The hybrid PV system has 4 parallel strings, and each string has 13 series-connected (mono crystalline 400 W Canadian Solar) PV modules. The energy storage system consists of 16 Narada (AcmeG 12 V 200) batteries with a nominal capacity of 1600 Ah. The simulation results show that the total annual energy production and specific energy production, were calculated to be 26.68 MWh/year and 1283 kWh/kWp/year, respectively. Simulation results also show the maximum energy injected into the utility grid in the month of June (1.814 MWh) and the minimum energy injected into the utility grid in the month of January (0.848 MWh). The battery cycle state of wear is 84.8%, and the static state of wear is 91.7%. Performance ratio (PR) analysis shows that the highest performance ratio of the hybrid system was 68.2% in December, the lowest performance ratio was 62.7% in May and the annual average performance ratio of a hybrid PV system is 65.57%. After identifying the major source of energy losses, the detailed losses for the whole year were computed and shown by the loss diagrams. To evaluate the cost effectiveness of the proposed system, a simple payback period calculation was performed.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021012045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
With the depletion of traditional fossil fuels, their disastrous impact on the environment and rising costs, renewable energy sources such as photovoltaic (PV) energy are rapidly emerging as sustainable and clean sources of power generation. The performance of photovoltaic systems is based on different factors such as the type of photovoltaic modules, irradiation potential and geographic location. In this research, PVsyst simulation software is used to design and simulate a hybrid photovoltaic system used to operate energy-efficient street lightning system. The simulation is performed to analyze the monthly/annual energy generated (kWh) by the hybrid system and specific power production (kWh/KWp). Additionally, various PV system losses are also investigated. The hybrid PV system has 4 parallel strings, and each string has 13 series-connected (mono crystalline 400 W Canadian Solar) PV modules. The energy storage system consists of 16 Narada (AcmeG 12 V 200) batteries with a nominal capacity of 1600 Ah. The simulation results show that the total annual energy production and specific energy production, were calculated to be 26.68 MWh/year and 1283 kWh/kWp/year, respectively. Simulation results also show the maximum energy injected into the utility grid in the month of June (1.814 MWh) and the minimum energy injected into the utility grid in the month of January (0.848 MWh). The battery cycle state of wear is 84.8%, and the static state of wear is 91.7%. Performance ratio (PR) analysis shows that the highest performance ratio of the hybrid system was 68.2% in December, the lowest performance ratio was 62.7% in May and the annual average performance ratio of a hybrid PV system is 65.57%. After identifying the major source of energy losses, the detailed losses for the whole year were computed and shown by the loss diagrams. To evaluate the cost effectiveness of the proposed system, a simple payback period calculation was performed.