RMSA algorithms resilient to multiple node failures in dynamic EONs

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Optical Switching and Networking Pub Date : 2021-11-01 DOI:10.1016/j.osn.2021.100633
Fábio Barbosa , Amaro de Sousa , Agostinho Agra , Krzysztof Walkowiak , Róża Goścień
{"title":"RMSA algorithms resilient to multiple node failures in dynamic EONs","authors":"Fábio Barbosa ,&nbsp;Amaro de Sousa ,&nbsp;Agostinho Agra ,&nbsp;Krzysztof Walkowiak ,&nbsp;Róża Goścień","doi":"10.1016/j.osn.2021.100633","DOIUrl":null,"url":null,"abstract":"<div><p>In Elastic Optical Networks (EONs), the way different service demands are supported in the network is ruled by the Routing, Modulation and Spectrum Assignment (RMSA) algorithm, which decides how the spectrum resources of the optical network are assigned to each service demand. In a dynamic EON, demand requests arrive randomly one at a time and the accepted demands last in the network for a random time duration. So, one important goal of the RMSA algorithm is the efficient use of the spectrum resources to maximize the acceptance probability of future demand requests. On the other hand, multiple failure events are becoming a concern to network operators as such events are becoming more frequent in time. In this work, we consider the case of multiple node failure events caused by malicious attacks against network nodes. In order to obtain RMSA algorithms resilient to such events, a path disaster availability metric was recently proposed which takes into account the probability of each path not being disrupted by an attack. This metric was proposed in the offline variant of the RMSA problem where all demands are assumed to be known at the beginning. Here, we exploit the use of the path disaster availability metric in the RMSA of dynamic EONs. In particular, we propose RMSA algorithms combining the path disaster availability metric with spectrum usage metrics in a dynamic way based on the network load level. The aim is that the efficient use of the resources is relaxed for improved resilience to multiple node failures when the EON is lightly loaded, while it becomes the most important goal when the EON becomes heavily loaded. We present simulation results considering a mix of unicast and anycast services in 3 well-known topologies. The results show that the RMSA algorithms combining the path disaster availability metric with spectrum usage metrics are the best trade-off between spectrum usage efficiency and resilience to multiple node failures.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"42 ","pages":"Article 100633"},"PeriodicalIF":1.9000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.osn.2021.100633","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427721000308","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

In Elastic Optical Networks (EONs), the way different service demands are supported in the network is ruled by the Routing, Modulation and Spectrum Assignment (RMSA) algorithm, which decides how the spectrum resources of the optical network are assigned to each service demand. In a dynamic EON, demand requests arrive randomly one at a time and the accepted demands last in the network for a random time duration. So, one important goal of the RMSA algorithm is the efficient use of the spectrum resources to maximize the acceptance probability of future demand requests. On the other hand, multiple failure events are becoming a concern to network operators as such events are becoming more frequent in time. In this work, we consider the case of multiple node failure events caused by malicious attacks against network nodes. In order to obtain RMSA algorithms resilient to such events, a path disaster availability metric was recently proposed which takes into account the probability of each path not being disrupted by an attack. This metric was proposed in the offline variant of the RMSA problem where all demands are assumed to be known at the beginning. Here, we exploit the use of the path disaster availability metric in the RMSA of dynamic EONs. In particular, we propose RMSA algorithms combining the path disaster availability metric with spectrum usage metrics in a dynamic way based on the network load level. The aim is that the efficient use of the resources is relaxed for improved resilience to multiple node failures when the EON is lightly loaded, while it becomes the most important goal when the EON becomes heavily loaded. We present simulation results considering a mix of unicast and anycast services in 3 well-known topologies. The results show that the RMSA algorithms combining the path disaster availability metric with spectrum usage metrics are the best trade-off between spectrum usage efficiency and resilience to multiple node failures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态eon中多节点故障弹性RMSA算法
在弹性光网络(Elastic Optical network, EONs)中,不同业务需求在网络中的支持方式由RMSA (Routing, Modulation and Spectrum Assignment)算法来决定,RMSA (Routing, Modulation and Spectrum Assignment)算法决定了光网络的频谱资源如何分配给不同的业务需求。在动态EON中,需求请求每次随机到达一个,被接受的需求在网络中持续一段随机的时间。因此,RMSA算法的一个重要目标是有效利用频谱资源,使未来需求请求的接受概率最大化。另一方面,多故障事件越来越频繁,成为网络运营商关注的问题。在这项工作中,我们考虑了恶意攻击网络节点导致的多节点故障事件的情况。为了使RMSA算法对此类事件具有弹性,最近提出了一种路径灾难可用性度量,该度量考虑了每条路径不被攻击中断的概率。该度量是在RMSA问题的离线变体中提出的,其中假设所有需求在开始时都是已知的。在这里,我们在动态eon的RMSA中使用路径灾难可用性度量。特别地,我们提出了基于网络负载水平动态结合路径灾难可用性度量和频谱使用度量的RMSA算法。其目的是在EON负载较轻时放松资源的有效使用,以提高对多节点故障的弹性,而在EON负载较重时,这成为最重要的目标。我们给出了在3种已知拓扑中考虑单播和任意播服务混合的仿真结果。结果表明,将路径灾难可用性度量与频谱使用度量相结合的RMSA算法是频谱使用效率和多节点故障恢复能力之间的最佳折衷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Switching and Networking
Optical Switching and Networking COMPUTER SCIENCE, INFORMATION SYSTEMS-OPTICS
CiteScore
5.20
自引率
18.20%
发文量
29
审稿时长
77 days
期刊介绍: Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time. Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to: • Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks • Optical Data Center Networks • Elastic optical networks • Green Optical Networks • Software Defined Optical Networks • Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer) • Optical Networks for Interet of Things (IOT) • Home Networks, In-Vehicle Networks, and Other Short-Reach Networks • Optical Access Networks • Optical Data Center Interconnection Systems • Optical OFDM and coherent optical network systems • Free Space Optics (FSO) networks • Hybrid Fiber - Wireless Networks • Optical Satellite Networks • Visible Light Communication Networks • Optical Storage Networks • Optical Network Security • Optical Network Resiliance and Reliability • Control Plane Issues and Signaling Protocols • Optical Quality of Service (OQoS) and Impairment Monitoring • Optical Layer Anycast, Broadcast and Multicast • Optical Network Applications, Testbeds and Experimental Networks • Optical Network for Science and High Performance Computing Networks
期刊最新文献
Modeling and upgrade of disaster-resilient interdependent networks using machine learning Self-adjusting resilient control plane for virtual software-defined optical networks NFV recovery strategies for critical services after massive failures in optical networks Editorial Board An architecture to improve performance of software-defined optical networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1