A deep architecture for log-Euclidean Fisher vector end-to-end learning with application to 3D point cloud classification

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Graphical Models Pub Date : 2022-09-01 DOI:10.1016/j.gmod.2022.101164
Amira Chekir
{"title":"A deep architecture for log-Euclidean Fisher vector end-to-end learning with application to 3D point cloud classification","authors":"Amira Chekir","doi":"10.1016/j.gmod.2022.101164","DOIUrl":null,"url":null,"abstract":"<div><p>Point clouds are a widely used form of 3D data, which can be produced by depth sensors, such as RGB-D cameras. The classification of common elements of 3D point clouds remains an open research problem.</p><p><span><span>We propose a new deep network approach for the end-to-end training of log-Euclidean Fisher vectors (LE-FVs), applied to the classification of 3D point clouds. Our method uses a log-Euclidean (LE) metric in order to extend the concept of Fisher vectors (FVs) to LE-FV encoding. The LE-FV was computed on </span>covariance matrices of local 3D point cloud descriptors, representing multiple features. Our architecture is composed of two blocks. The first one aims to map the covariance matrices representing the 3D point cloud descriptors to the </span>Euclidean space<span>. The second block allows for joint and simultaneous learning of LE-FV Gaussian Mixture Model (GMM) parameters, LE-FV dimensionality reduction, and multi-label classification.</span></p><p>Our LE-FV deep learning model is more accurate than the FV deep learning architecture. Additionally, the introduction of joint learning of 3D point cloud features in the log-Euclidean space, including LE-FV GMM parameters, LE-FV dimensionality reduction, and multi-label classification greatly improves the accuracy of classification. Our method has also been compared with the most popular methods in the literature for 3D point cloud classification, and it achieved good performance. The quantitative evidence will be shown through different experiments.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"123 ","pages":"Article 101164"},"PeriodicalIF":2.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070322000406","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2

Abstract

Point clouds are a widely used form of 3D data, which can be produced by depth sensors, such as RGB-D cameras. The classification of common elements of 3D point clouds remains an open research problem.

We propose a new deep network approach for the end-to-end training of log-Euclidean Fisher vectors (LE-FVs), applied to the classification of 3D point clouds. Our method uses a log-Euclidean (LE) metric in order to extend the concept of Fisher vectors (FVs) to LE-FV encoding. The LE-FV was computed on covariance matrices of local 3D point cloud descriptors, representing multiple features. Our architecture is composed of two blocks. The first one aims to map the covariance matrices representing the 3D point cloud descriptors to the Euclidean space. The second block allows for joint and simultaneous learning of LE-FV Gaussian Mixture Model (GMM) parameters, LE-FV dimensionality reduction, and multi-label classification.

Our LE-FV deep learning model is more accurate than the FV deep learning architecture. Additionally, the introduction of joint learning of 3D point cloud features in the log-Euclidean space, including LE-FV GMM parameters, LE-FV dimensionality reduction, and multi-label classification greatly improves the accuracy of classification. Our method has also been compared with the most popular methods in the literature for 3D point cloud classification, and it achieved good performance. The quantitative evidence will be shown through different experiments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个深度架构的对数欧氏费雪向量端到端学习与应用于三维点云分类
点云是一种广泛使用的3D数据形式,它可以由深度传感器产生,如RGB-D相机。三维点云的公共元素分类仍然是一个开放的研究问题。我们提出了一种新的深度网络方法,用于log-Euclidean Fisher向量(LE-FVs)的端到端训练,并应用于3D点云的分类。我们的方法使用对数欧几里得(LE)度量,以便将Fisher向量(fv)的概念扩展到LE- fv编码。在局部三维点云描述符的协方差矩阵上计算LE-FV,表示多个特征。我们的建筑由两个街区组成。第一个是将表示三维点云描述符的协方差矩阵映射到欧几里德空间。第二个块允许联合和同时学习LE-FV高斯混合模型(GMM)参数,LE-FV降维和多标签分类。我们的LE-FV深度学习模型比FV深度学习架构更准确。此外,引入对数欧氏空间三维点云特征的联合学习,包括LE-FV GMM参数、LE-FV降维、多标签分类等,大大提高了分类精度。我们的方法还与文献中最流行的三维点云分类方法进行了比较,取得了良好的性能。定量证据将通过不同的实验来展示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
期刊最新文献
HammingVis: A visual analytics approach for understanding erroneous outcomes of quantum computing in hamming space A detail-preserving method for medial mesh computation in triangular meshes Exploring the neural landscape: Visual analytics of neuron activation in large language models with NeuronautLLM GarTemFormer: Temporal transformer-based for optimizing virtual garment animation Building semantic segmentation from large-scale point clouds via primitive recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1