Jian Zhang , Chen Li , Peichi Zhou , Changbo Wang , Gaoqi He , Hong Qin
{"title":"Authoring multi-style terrain with global-to-local control","authors":"Jian Zhang , Chen Li , Peichi Zhou , Changbo Wang , Gaoqi He , Hong Qin","doi":"10.1016/j.gmod.2021.101122","DOIUrl":null,"url":null,"abstract":"<div><p><span>The appearance styles of natural terrains vary significantly from region to region in real world, and there is a strong need to effectively produce realistic terrain with certain style in computer graphics<span><span>. In this paper, we advocate a novel neural network approach to the rapid synthesis of multi-style terrains that could directly learn and infer from real terrain data. The key idea is to explicitly devise a conditional </span>generative adversarial network (GAN) which encourages and favors the maximum-distance embedding of acquired styles in the latent space. Towards this functionality, we first collect a dataset that exhibits apparent terrain style diversity in their style attributes. Second, we design multiple </span></span>discriminators<span> that can distinguish different terrain styles. Third, we employ discriminators to extract terrain features in different spatial scales, so that the developed generator can produce new terrains by fusing the finer-scale and coarser-scale styles. In our experiments, we collect 10 typical terrain datasets from real terrain data that cover a wide range of regions. Our approach successfully generates realistic terrains with global-to-local style control. The experimental results have confirmed our neural network can produce natural terrains with high fidelity, which are user-friendly to style interpolation and style mixing for the terrain authoring task.</span></p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"119 ","pages":"Article 101122"},"PeriodicalIF":2.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070321000278","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 4
Abstract
The appearance styles of natural terrains vary significantly from region to region in real world, and there is a strong need to effectively produce realistic terrain with certain style in computer graphics. In this paper, we advocate a novel neural network approach to the rapid synthesis of multi-style terrains that could directly learn and infer from real terrain data. The key idea is to explicitly devise a conditional generative adversarial network (GAN) which encourages and favors the maximum-distance embedding of acquired styles in the latent space. Towards this functionality, we first collect a dataset that exhibits apparent terrain style diversity in their style attributes. Second, we design multiple discriminators that can distinguish different terrain styles. Third, we employ discriminators to extract terrain features in different spatial scales, so that the developed generator can produce new terrains by fusing the finer-scale and coarser-scale styles. In our experiments, we collect 10 typical terrain datasets from real terrain data that cover a wide range of regions. Our approach successfully generates realistic terrains with global-to-local style control. The experimental results have confirmed our neural network can produce natural terrains with high fidelity, which are user-friendly to style interpolation and style mixing for the terrain authoring task.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.