A study on anomaly detection ensembles

Q1 Mathematics Journal of Applied Logic Pub Date : 2017-05-01 DOI:10.1016/j.jal.2016.12.002
Alvin Chiang , Esther David , Yuh-Jye Lee , Guy Leshem , Yi-Ren Yeh
{"title":"A study on anomaly detection ensembles","authors":"Alvin Chiang ,&nbsp;Esther David ,&nbsp;Yuh-Jye Lee ,&nbsp;Guy Leshem ,&nbsp;Yi-Ren Yeh","doi":"10.1016/j.jal.2016.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>An anomaly, or outlier, is an object exhibiting differences that suggest it belongs to an as-yet undefined class or category. Early detection of anomalies often proves of great importance because they may correspond to events such as fraud, spam, or device malfunctions. By automating the creation of a ranking or list of deviations, we can save time and decrease the cognitive overload of the individuals or groups responsible for responding to such events.</p><p>Over the years many anomaly and outlier metrics have been developed. In this paper we propose a clustering-based score ensembling method for outlier detection. Using benchmark datasets we evaluate quantitatively the robustness and accuracy of different ensemble strategies. We find that ensembling strategies offer only limited value for increasing overall performance, but provide robustness by negating the influence of severely underperforming models.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"21 ","pages":"Pages 1-13"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2016.12.002","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868316301240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 16

Abstract

An anomaly, or outlier, is an object exhibiting differences that suggest it belongs to an as-yet undefined class or category. Early detection of anomalies often proves of great importance because they may correspond to events such as fraud, spam, or device malfunctions. By automating the creation of a ranking or list of deviations, we can save time and decrease the cognitive overload of the individuals or groups responsible for responding to such events.

Over the years many anomaly and outlier metrics have been developed. In this paper we propose a clustering-based score ensembling method for outlier detection. Using benchmark datasets we evaluate quantitatively the robustness and accuracy of different ensemble strategies. We find that ensembling strategies offer only limited value for increasing overall performance, but provide robustness by negating the influence of severely underperforming models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异常检测集成系统的研究
一个异常或离群值,是一个显示出差异的对象,表明它属于一个尚未定义的类或类别。早期检测异常通常被证明是非常重要的,因为它们可能对应于欺诈、垃圾邮件或设备故障等事件。通过自动创建排序或偏差列表,我们可以节省时间并减少负责响应此类事件的个人或团体的认知过载。多年来,已经开发了许多异常和离群指标。在本文中,我们提出了一种基于聚类的分数集成方法来检测异常值。使用基准数据集,我们定量地评估了不同集成策略的鲁棒性和准确性。我们发现集成策略对提高整体性能提供的价值有限,但通过否定严重表现不佳的模型的影响提供鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
期刊最新文献
Editorial Board Editorial Board Formal analysis of SEU mitigation for early dependability and performability analysis of FPGA-based space applications Logical Investigations on Assertion and Denial Natural deduction for bi-intuitionistic logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1