AgRP neurons encode circadian feeding time

IF 21.2 1区 医学 Q1 NEUROSCIENCES Nature neuroscience Pub Date : 2023-11-13 DOI:10.1038/s41593-023-01482-6
Nilufer Sayar-Atasoy, Iltan Aklan, Yavuz Yavuz, Connor Laule, Hyojin Kim, Jacob Rysted, Muhammed Ikbal Alp, Debbie Davis, Bayram Yilmaz, Deniz Atasoy
{"title":"AgRP neurons encode circadian feeding time","authors":"Nilufer Sayar-Atasoy, Iltan Aklan, Yavuz Yavuz, Connor Laule, Hyojin Kim, Jacob Rysted, Muhammed Ikbal Alp, Debbie Davis, Bayram Yilmaz, Deniz Atasoy","doi":"10.1038/s41593-023-01482-6","DOIUrl":null,"url":null,"abstract":"Food intake follows a predictable daily pattern and synchronizes metabolic rhythms. Neurons expressing agouti-related protein (AgRP) read out physiological energetic state and elicit feeding, but the regulation of these neurons across daily timescales is poorly understood. Using a combination of neuron dynamics measurements and timed optogenetic activation in mice, we show that daily AgRP-neuron activity was not fully consistent with existing models of homeostatic regulation. Instead of operating as a ‘deprivation counter’, AgRP-neuron activity primarily followed the circadian rest–activity cycle through a process that required an intact suprachiasmatic nucleus and synchronization by light. Imposing novel feeding patterns through time-restricted food access or periodic AgRP-neuron stimulation was sufficient to resynchronize the daily AgRP-neuron activity rhythm and drive anticipatory-like behavior through a process that required DMHPDYN neurons. These results indicate that AgRP neurons integrate time-of-day information of past feeding experience with current metabolic needs to predict circadian feeding time. Sayar-Atasoy et al. monitored the activity of hypothalamic AgRP hunger neurons throughout the day and showed that these neurons anticipate meal time by integrating information about past circadian feeding experience with ongoing metabolic needs.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"27 1","pages":"102-115"},"PeriodicalIF":21.2000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-023-01482-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Food intake follows a predictable daily pattern and synchronizes metabolic rhythms. Neurons expressing agouti-related protein (AgRP) read out physiological energetic state and elicit feeding, but the regulation of these neurons across daily timescales is poorly understood. Using a combination of neuron dynamics measurements and timed optogenetic activation in mice, we show that daily AgRP-neuron activity was not fully consistent with existing models of homeostatic regulation. Instead of operating as a ‘deprivation counter’, AgRP-neuron activity primarily followed the circadian rest–activity cycle through a process that required an intact suprachiasmatic nucleus and synchronization by light. Imposing novel feeding patterns through time-restricted food access or periodic AgRP-neuron stimulation was sufficient to resynchronize the daily AgRP-neuron activity rhythm and drive anticipatory-like behavior through a process that required DMHPDYN neurons. These results indicate that AgRP neurons integrate time-of-day information of past feeding experience with current metabolic needs to predict circadian feeding time. Sayar-Atasoy et al. monitored the activity of hypothalamic AgRP hunger neurons throughout the day and showed that these neurons anticipate meal time by integrating information about past circadian feeding experience with ongoing metabolic needs.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AgRP神经元编码昼夜进食时间。
食物摄入遵循可预测的日常模式,并与代谢节奏同步。表达AgRP的神经元读出生理能量状态并引发摄食,但这些神经元在日常时间尺度上的调控尚不清楚。通过结合神经元动力学测量和定时光遗传激活小鼠,我们发现每日agrp神经元活动与现有的稳态调节模型并不完全一致。与“剥夺计数器”不同,agrp神经元的活动主要遵循昼夜节律的休息-活动周期,这一过程需要完整的视交叉上核和光的同步。通过限时进食或周期性刺激agrp -神经元来施加新的进食模式,足以重新同步每日agrp -神经元的活动节奏,并通过DMHPDYN神经元驱动类似预期的行为。这些结果表明,AgRP神经元将过去进食经验的时间信息与当前的代谢需求相结合,以预测昼夜进食时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
期刊最新文献
The cell-type underpinnings of the human functional cortical connectome Tau filaments are tethered within brain extracellular vesicles in Alzheimer’s disease Converging cortical axes A top-down slow breathing circuit that alleviates negative affect in mice A revised view of the role of CaMKII in learning and memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1