Protection from T cell-dependent colitis by the helminth-derived immunomodulatory mimic of transforming growth factor-β, Hp-TGM.

Discovery immunology Pub Date : 2023-01-18 eCollection Date: 2023-01-01 DOI:10.1093/discim/kyad001
Danielle J Smyth, Madeleine P J White, Chris J C Johnston, Anne-Marie Donachie, Marta Campillo Poveda, Henry J McSorley, Rick M Maizels
{"title":"Protection from T cell-dependent colitis by the helminth-derived immunomodulatory mimic of transforming growth factor-β, <i>Hp</i>-TGM.","authors":"Danielle J Smyth, Madeleine P J White, Chris J C Johnston, Anne-Marie Donachie, Marta Campillo Poveda, Henry J McSorley, Rick M Maizels","doi":"10.1093/discim/kyad001","DOIUrl":null,"url":null,"abstract":"<p><p>In animal models of inflammatory colitis, pathology can be ameliorated by several intestinal helminth parasites, including the mouse nematode <i>Heligmosomoides polygyrus</i>. To identify parasite products that may exert anti-inflammatory effects <i>in vivo</i>, we tested <i>H. polygyrus</i> excretory-secretory (HES) products, as well as a recombinantly expressed parasite protein, transforming growth factor mimic (TGM), that functionally mimics the mammalian immunomodulatory cytokine TGF-β. HES and TGM showed a degree of protection in dextran sodium sulphate-induced colitis, with a reduction in inflammatory cytokines, but did not fully block the development of pathology. HES also showed little benefit in a similar acute trinitrobenzene sulphonic acid-induced model. However, in a T cell transfer-mediated model with recombination activation gene (RAG)-deficient mice, HES-reduced disease scores if administered throughout the first 2 or 4 weeks following transfer but was less effective if treatment was delayed until 14 days after T cell transfer. Recombinant TGM similarly dampened colitis in RAG-deficient recipients of effector T cells, and was effective even if introduced only once symptoms had begun to be manifest. These results are a promising indication that TGM may replicate, and even surpass, the modulatory properties of native parasite HES.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958376/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discovery immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/discim/kyad001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In animal models of inflammatory colitis, pathology can be ameliorated by several intestinal helminth parasites, including the mouse nematode Heligmosomoides polygyrus. To identify parasite products that may exert anti-inflammatory effects in vivo, we tested H. polygyrus excretory-secretory (HES) products, as well as a recombinantly expressed parasite protein, transforming growth factor mimic (TGM), that functionally mimics the mammalian immunomodulatory cytokine TGF-β. HES and TGM showed a degree of protection in dextran sodium sulphate-induced colitis, with a reduction in inflammatory cytokines, but did not fully block the development of pathology. HES also showed little benefit in a similar acute trinitrobenzene sulphonic acid-induced model. However, in a T cell transfer-mediated model with recombination activation gene (RAG)-deficient mice, HES-reduced disease scores if administered throughout the first 2 or 4 weeks following transfer but was less effective if treatment was delayed until 14 days after T cell transfer. Recombinant TGM similarly dampened colitis in RAG-deficient recipients of effector T cells, and was effective even if introduced only once symptoms had begun to be manifest. These results are a promising indication that TGM may replicate, and even surpass, the modulatory properties of native parasite HES.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自蠕虫的转化生长因子-β免疫调节模拟物Hp-TGM可防止T细胞依赖性结肠炎。
在炎症性结肠炎的动物模型中,包括小鼠多角螺旋体线虫在内的几种肠道蠕虫寄生虫可改善病理学。为了找出可能在体内发挥抗炎作用的寄生虫产物,我们测试了多钩吻蛭的排泄-分泌(HES)产物以及一种重组表达的寄生虫蛋白--转化生长因子模拟物(TGM),后者在功能上模拟哺乳动物的免疫调节细胞因子 TGF-β。HES 和 TGM 对葡聚糖硫酸钠诱导的结肠炎有一定程度的保护作用,可减少炎性细胞因子,但并不能完全阻止病变的发展。在类似的急性三硝基苯磺酸诱导模型中,HES 也没有显示出什么益处。然而,在由 T 细胞转移介导的重组活化基因(RAG)缺陷小鼠模型中,如果在 T 细胞转移后的头 2 周或 4 周内给药,HES 可降低疾病评分,但如果延迟到 T 细胞转移后 14 天才给药,则效果较差。重组 TGM 同样能抑制 RAG 缺陷受体效应 T 细胞的结肠炎,而且即使在症状开始显现时才使用也有效。这些结果很有希望地表明,TGM 可能复制甚至超越原生寄生虫 HES 的调节特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of a transcription factor network regulating anti-TNF mediated IL10 expression in human CD4+ T cells Correction to: Lunar-linked biological rhythms in the immune system of freshwater three-spined stickleback. Assessing immune phenotypes using simple proxy measures: promise and limitations. Extracellular vesicles: an emerging tool for wild immunology. Lunar-linked biological rhythms in the immune system of freshwater three-spined stickleback.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1