{"title":"FMTM-feature-map-based transform model for brain image segmentation in tumor detection.","authors":"Revathi Sundarasekar, Ahilan Appathurai","doi":"10.1080/0954898X.2022.2110620","DOIUrl":null,"url":null,"abstract":"<p><p>The segmentation of brain images is a leading quantitative measure for detecting physiological changes and for analysing structural functions. Based on trends and dimensions of brain, the images indicate heterogeneity. Accurate brain tumour segmentation remains a critical challenge despite the persistent efforts of researchers were owing to a variety of obstacles. This impacts the outcome of tumour detection, causing errors. For addressing this issue, a Feature-Map based Transform Model (FMTM) is introduced to focus on heterogeneous features of input picture to map differences and intensity based on transition Fourier. Unchecked machine learning is used for reliable characteristic map recognition in this mapping process. For the determination of severity and variability, the method of identification depends on symmetry and texture. Learning instances are taught to improve precision using predefined data sets, regardless of loss of labels. The process is recurring until the maximum precision of tumour detection is achieved in low convergence. In this research, FMTM has been applied to brain tumour segmentation to automatically extract feature representations and produce accurate and steady performance because of promising performance made by powerful transition Fourier methods. The suggested model's performance is shown by the metrics processing time, precision, accuracy, and F1-Score.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":"34 1-2","pages":"1-25"},"PeriodicalIF":1.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2022.2110620","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The segmentation of brain images is a leading quantitative measure for detecting physiological changes and for analysing structural functions. Based on trends and dimensions of brain, the images indicate heterogeneity. Accurate brain tumour segmentation remains a critical challenge despite the persistent efforts of researchers were owing to a variety of obstacles. This impacts the outcome of tumour detection, causing errors. For addressing this issue, a Feature-Map based Transform Model (FMTM) is introduced to focus on heterogeneous features of input picture to map differences and intensity based on transition Fourier. Unchecked machine learning is used for reliable characteristic map recognition in this mapping process. For the determination of severity and variability, the method of identification depends on symmetry and texture. Learning instances are taught to improve precision using predefined data sets, regardless of loss of labels. The process is recurring until the maximum precision of tumour detection is achieved in low convergence. In this research, FMTM has been applied to brain tumour segmentation to automatically extract feature representations and produce accurate and steady performance because of promising performance made by powerful transition Fourier methods. The suggested model's performance is shown by the metrics processing time, precision, accuracy, and F1-Score.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.