Cellular signals integrate cell cycle and metabolic control in cancer.

3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Advances in protein chemistry and structural biology Pub Date : 2023-01-01 DOI:10.1016/bs.apcsb.2023.01.002
Chareeporn Akekawatchai, Sarawut Jitrapakdee
{"title":"Cellular signals integrate cell cycle and metabolic control in cancer.","authors":"Chareeporn Akekawatchai,&nbsp;Sarawut Jitrapakdee","doi":"10.1016/bs.apcsb.2023.01.002","DOIUrl":null,"url":null,"abstract":"<p><p>Growth factors are the small peptides that can promote growth, differentiation, and survival of most living cells. However, aberrant activation of receptor tyrosine kinases by GFs can generate oncogenic signals, resulting in oncogenic transformation. Accumulating evidence support a link between GF/RTK signaling through the major signaling pathways, Ras/Erk and PI3K/Akt, and cell cycle progression. In response to GF signaling, the quiescent cells in the G<sub>0</sub> stage can re-enter the cell cycle and become the proliferative stage. While in the proliferative stage, tumor cells undergo profound changes in their metabolism to support biomass production and bioenergetic requirements. Accumulating data show that the cell cycle regulators, specifically cyclin D, cyclin B, Cdk2, Cdk4, and Cdk6, and anaphase-promoting complex/cyclosome (APC/C-Cdh1) play critical roles in modulating various metabolic pathways. These cell cycle regulators can regulate metabolic enzyme activities through post-translational mechanisms or the transcriptional factors that control the expression of the metabolic genes. This fine-tune control allows only the relevant metabolic pathways to be active in a particular phase of the cell cycle, thereby providing suitable amounts of biosynthetic precursors available during the proliferative stage. The imbalance of metabolites in each cell cycle phase can induce cell cycle arrest followed by p53-induced apoptosis.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"135 ","pages":"397-423"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2023.01.002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Growth factors are the small peptides that can promote growth, differentiation, and survival of most living cells. However, aberrant activation of receptor tyrosine kinases by GFs can generate oncogenic signals, resulting in oncogenic transformation. Accumulating evidence support a link between GF/RTK signaling through the major signaling pathways, Ras/Erk and PI3K/Akt, and cell cycle progression. In response to GF signaling, the quiescent cells in the G0 stage can re-enter the cell cycle and become the proliferative stage. While in the proliferative stage, tumor cells undergo profound changes in their metabolism to support biomass production and bioenergetic requirements. Accumulating data show that the cell cycle regulators, specifically cyclin D, cyclin B, Cdk2, Cdk4, and Cdk6, and anaphase-promoting complex/cyclosome (APC/C-Cdh1) play critical roles in modulating various metabolic pathways. These cell cycle regulators can regulate metabolic enzyme activities through post-translational mechanisms or the transcriptional factors that control the expression of the metabolic genes. This fine-tune control allows only the relevant metabolic pathways to be active in a particular phase of the cell cycle, thereby providing suitable amounts of biosynthetic precursors available during the proliferative stage. The imbalance of metabolites in each cell cycle phase can induce cell cycle arrest followed by p53-induced apoptosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞信号整合了肿瘤细胞周期和代谢控制。
生长因子是能够促进大多数活细胞生长、分化和存活的小肽。然而,GFs异常激活受体酪氨酸激酶可产生致癌信号,导致致癌转化。越来越多的证据支持GF/RTK信号通过主要信号通路Ras/Erk和PI3K/Akt与细胞周期进展之间的联系。在GF信号的作用下,处于G0期的静止细胞可以重新进入细胞周期,进入增殖阶段。而在增殖阶段,肿瘤细胞的代谢发生了深刻的变化,以支持生物质生产和生物能量需求。越来越多的数据表明,细胞周期调节因子,特别是cyclin D、cyclin B、Cdk2、Cdk4和Cdk6,以及后期促进复合物/环体(APC/C-Cdh1)在调节各种代谢途径中发挥着关键作用。这些细胞周期调节因子可以通过翻译后机制或控制代谢基因表达的转录因子来调节代谢酶的活性。这种微调控制只允许相关的代谢途径在细胞周期的特定阶段活跃,从而在增殖阶段提供适当数量的生物合成前体。细胞周期各阶段代谢物失衡可导致细胞周期停滞,随后p53诱导细胞凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in protein chemistry and structural biology
Advances in protein chemistry and structural biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
7.40
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.
期刊最新文献
In silico network pharmacology study on Glycyrrhiza glabra: Analyzing the immune-boosting phytochemical properties of Siddha medicinal plant against COVID-19. A computational pipeline elucidating functions of conserved hypothetical Trypanosoma cruzi proteins based on public proteomic data. Analysis of endoglucanases production using metatranscriptomics and proteomics approach. Application of functional proteomics in understanding RNA virus-mediated infection. Functional proteomics based on protein microarray technology for biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1