{"title":"Identification of Cancer/Testis Antigens Related to Gastric Cancer Prognosis Based on Co-Expression Network and Integrated Transcriptome Analyses.","authors":"Sara Ansari, Parvaneh Nikpour","doi":"10.4103/abr.abr_400_21","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gastric cancer is a worldwide life-threatening cancer. The underlying cause of it is still unknown. We have noticed that some cancer/testis antigens (CTAs) are up-regulated in gastric cancer. The role of these genes in gastric cancer development is not fully understood. The main aim of the current study was to comprehensively investigate CTAs' expression and function in stomach adenocarcinoma (STAD).</p><p><strong>Materials and methods: </strong>A comprehensive list of CTA genes was compiled from different databases. Transcriptome profiles of STAD were downloaded from the cancer genome atlas (TCGA) database and analyzed. Differentially-expressed CTAs were identified. Pathway enrichment analysis, weighted gene correlation network analysis (WGCNA), and overall survival (OS) analysis were performed on differentially-expressed CTA genes.</p><p><strong>Results: </strong>Pathway enrichment analysis indicates that CTA genes are involved in protein binding, ribonucleic acid processing, and reproductive tissues. WGCNA showed that six differentially-expressed CTA genes, namely Melanoma antigen gene (MAGE) family member A3, A6, A12 and chondrosarcoma associated gene (CSAG) 1, 2, and 3, were correlated. Up-regulation of MAGEA11, MAGEC3, Per ARNT SIM domain containing 1 (PASD1), placenta-specific protein 1 (PLAC1) and sperm protein associated with the nucleus X-linked family member (SPANXB1) were significantly associated with lower OS of patients.</p><p><strong>Conclusion: </strong>MAGEA11, MAGEC3, PASD1, PLAC1, and SPANXB1 can be investigated as prognostic biomarkers in basic and clinical studies. Further functional experiments are needed to understand the exact interaction mechanisms of these genes.</p>","PeriodicalId":7225,"journal":{"name":"Advanced Biomedical Research","volume":"12 ","pages":"52"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/47/8e/ABR-12-52.PMC10086657.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Biomedical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/abr.abr_400_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Gastric cancer is a worldwide life-threatening cancer. The underlying cause of it is still unknown. We have noticed that some cancer/testis antigens (CTAs) are up-regulated in gastric cancer. The role of these genes in gastric cancer development is not fully understood. The main aim of the current study was to comprehensively investigate CTAs' expression and function in stomach adenocarcinoma (STAD).
Materials and methods: A comprehensive list of CTA genes was compiled from different databases. Transcriptome profiles of STAD were downloaded from the cancer genome atlas (TCGA) database and analyzed. Differentially-expressed CTAs were identified. Pathway enrichment analysis, weighted gene correlation network analysis (WGCNA), and overall survival (OS) analysis were performed on differentially-expressed CTA genes.
Results: Pathway enrichment analysis indicates that CTA genes are involved in protein binding, ribonucleic acid processing, and reproductive tissues. WGCNA showed that six differentially-expressed CTA genes, namely Melanoma antigen gene (MAGE) family member A3, A6, A12 and chondrosarcoma associated gene (CSAG) 1, 2, and 3, were correlated. Up-regulation of MAGEA11, MAGEC3, Per ARNT SIM domain containing 1 (PASD1), placenta-specific protein 1 (PLAC1) and sperm protein associated with the nucleus X-linked family member (SPANXB1) were significantly associated with lower OS of patients.
Conclusion: MAGEA11, MAGEC3, PASD1, PLAC1, and SPANXB1 can be investigated as prognostic biomarkers in basic and clinical studies. Further functional experiments are needed to understand the exact interaction mechanisms of these genes.