Synthesis of Novel Fluoro Phenyl Triazoles Via Click Chemistry with or without Microwave Irradiation and their Evaluation as Anti-proliferative Agents in SiHa Cells.
{"title":"Synthesis of Novel Fluoro Phenyl Triazoles <i>Via</i> Click Chemistry with or without Microwave Irradiation and their Evaluation as Anti-proliferative Agents in SiHa Cells.","authors":"Johana Aguilar, Elisa Leyva, Silvia Elena Loredo-Carrillo, Agobardo Cárdenas-Chaparro, Antonio Martínez-Richa, Hiram Hernández-López, Jorge Gustavo Araujo-Huitrado, Angélica Judith Granados-López, Yamilé López-Hernández, Jesús Adrián López","doi":"10.2174/1570179420666230420084000","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Perform the synthesis of novel fluoro phenyl triazoles <i>via</i> click chemistry with or without microwave irradiation and their evaluation as anti-proliferative agents in SiHa cells.</p><p><strong>Background: </strong>Triazoles are heterocyclic compounds containing a five-member ring with two carbon and three nitrogen atoms. They are of great importance since many of them have shown to have biological activity as antifungal, antiviral, antibacterial, anti-HIV, anti-tuberculosis, vasodilator, and anticancer agents.</p><p><strong>Objectives: </strong>Synthesize novel fluoro phenyl triazoles <i>via</i> click chemistry and evaluate their antiproliferative activity.</p><p><strong>Methods: </strong>First, several fluorophenyl azides were prepared. Reacting these aryl azides with phenylacetylene in the presence of Cu(I) catalyst, the corresponding fluoro phenyl triazoles were obtained by two methodologies, stirring at room temperature and under microwave irradiation at 40ºC. In addition, their antiproliferative activity was evaluated in cervical cancer SiHa cells.</p><p><strong>Results: </strong>Fluoro phenyl triazoles were obtained within minutes by means of microwave irradiation. The compound 3f, containing two fluorine atoms next to the carbon connected to the triazole ring, was the most potent among the fluoro phenyl triazoles tested in this study. Interestingly, the addition of a fluorine atom to the phenyl triazole structure in a specific site increases its antiproliferative effect as compared to parent phenyl triazole 3a without a fluorine atom.</p><p><strong>Conclusion: </strong>Several fluoro phenyl triazoles were obtained by reacting fluoro phenyl azides with phenylacetylene in the presence of copper sulphate, sodium ascorbate and phenanthroline. Preparation of these triazoles with MW irradiation represents a better methodology since they are obtained within minutes and higher yields of cleaner compounds are obtained. In terms of biological studies, the proximity between fluorine atom and triazole ring increases its biological activity.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/1570179420666230420084000","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Perform the synthesis of novel fluoro phenyl triazoles via click chemistry with or without microwave irradiation and their evaluation as anti-proliferative agents in SiHa cells.
Background: Triazoles are heterocyclic compounds containing a five-member ring with two carbon and three nitrogen atoms. They are of great importance since many of them have shown to have biological activity as antifungal, antiviral, antibacterial, anti-HIV, anti-tuberculosis, vasodilator, and anticancer agents.
Objectives: Synthesize novel fluoro phenyl triazoles via click chemistry and evaluate their antiproliferative activity.
Methods: First, several fluorophenyl azides were prepared. Reacting these aryl azides with phenylacetylene in the presence of Cu(I) catalyst, the corresponding fluoro phenyl triazoles were obtained by two methodologies, stirring at room temperature and under microwave irradiation at 40ºC. In addition, their antiproliferative activity was evaluated in cervical cancer SiHa cells.
Results: Fluoro phenyl triazoles were obtained within minutes by means of microwave irradiation. The compound 3f, containing two fluorine atoms next to the carbon connected to the triazole ring, was the most potent among the fluoro phenyl triazoles tested in this study. Interestingly, the addition of a fluorine atom to the phenyl triazole structure in a specific site increases its antiproliferative effect as compared to parent phenyl triazole 3a without a fluorine atom.
Conclusion: Several fluoro phenyl triazoles were obtained by reacting fluoro phenyl azides with phenylacetylene in the presence of copper sulphate, sodium ascorbate and phenanthroline. Preparation of these triazoles with MW irradiation represents a better methodology since they are obtained within minutes and higher yields of cleaner compounds are obtained. In terms of biological studies, the proximity between fluorine atom and triazole ring increases its biological activity.
期刊介绍:
Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.