On the combinatorics of crystal structures. II. Number of Wyckoff sequences of a given subdivision complexity.

IF 1.9 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Acta Crystallographica Section A: Foundations and Advances Pub Date : 2023-05-01 DOI:10.1107/S2053273323002437
Wolfgang Hornfeck, Kamil Červený
{"title":"On the combinatorics of crystal structures. II. Number of Wyckoff sequences of a given subdivision complexity.","authors":"Wolfgang Hornfeck,&nbsp;Kamil Červený","doi":"10.1107/S2053273323002437","DOIUrl":null,"url":null,"abstract":"<p><p>Wyckoff sequences are a way of encoding combinatorial information about crystal structures of a given symmetry. In particular, they offer an easy access to the calculation of a crystal structure's combinatorial, coordinational and configurational complexity, taking into account the individual multiplicities (combinatorial degrees of freedom) and arities (coordinational degrees of freedom) associated with each Wyckoff position. However, distinct Wyckoff sequences can yield the same total numbers of combinatorial and coordinational degrees of freedom. In this case, they share the same value for their Shannon entropy based subdivision complexity. The enumeration of Wyckoff sequences with this property is a combinatorial problem solved in this work, first in the general case of fixed subdivision complexity but non-specified Wyckoff sequence length, and second for the restricted case of Wyckoff sequences of both fixed subdivision complexity and fixed Wyckoff sequence length. The combinatorial results are accompanied by calculations of the combinatorial, coordinational, configurational and subdivision complexities, performed on Wyckoff sequences representing actual crystal structures.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":"79 Pt 3","pages":"280-294"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273323002437","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wyckoff sequences are a way of encoding combinatorial information about crystal structures of a given symmetry. In particular, they offer an easy access to the calculation of a crystal structure's combinatorial, coordinational and configurational complexity, taking into account the individual multiplicities (combinatorial degrees of freedom) and arities (coordinational degrees of freedom) associated with each Wyckoff position. However, distinct Wyckoff sequences can yield the same total numbers of combinatorial and coordinational degrees of freedom. In this case, they share the same value for their Shannon entropy based subdivision complexity. The enumeration of Wyckoff sequences with this property is a combinatorial problem solved in this work, first in the general case of fixed subdivision complexity but non-specified Wyckoff sequence length, and second for the restricted case of Wyckoff sequences of both fixed subdivision complexity and fixed Wyckoff sequence length. The combinatorial results are accompanied by calculations of the combinatorial, coordinational, configurational and subdivision complexities, performed on Wyckoff sequences representing actual crystal structures.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论晶体结构的组合学。2给定细分复杂度的Wyckoff序列的个数。
威科夫序列是一种对给定对称性晶体结构的组合信息进行编码的方法。特别是,考虑到与每个Wyckoff位置相关的单个多重度(组合自由度)和相似性(协调自由度),它们提供了一个简单的方法来计算晶体结构的组合、协调和构型复杂性。然而,不同的Wyckoff序列可以产生相同的组合自由度和协调自由度的总数。在这种情况下,它们基于香农熵的细分复杂度共享相同的值。具有这一性质的Wyckoff序列的枚举是本文所要解决的一个组合问题,首先是在细分复杂度固定但Wyckoff序列长度不指定的一般情况下,其次是在细分复杂度和Wyckoff序列长度都固定的限制情况下。组合结果伴随着对代表实际晶体结构的Wyckoff序列的组合、配位、构型和细分复杂性的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Crystallographica Section A: Foundations and Advances
Acta Crystallographica Section A: Foundations and Advances CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
2.60
自引率
11.10%
发文量
419
期刊介绍: Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials. The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial. The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.
期刊最新文献
Complete classification of six-dimensional iso-edge domains. The general equation of δ direct methods and the novel SMAR algorithm residuals using the absolute value of ρ and the zero conversion of negative ripples. Periodic graphs with coincident edges: folding-ladder and related graphs. Influence of device configuration and noise on a machine learning predictor for the selection of nanoparticle small-angle X-ray scattering models. An alternative method to the Takagi-Taupin equations for studying dark-field X-ray microscopy of deformed crystals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1