Arshad Ali Khan, Safia Akhtar, Yogesh Yadav, Atiya Akhtar, Walla Alelwani, Azzah M Bannunah, Syed Mahmood
{"title":"Lopinavir-Loaded Self-Nanoemulsifying Drug Delivery System for Enhanced Solubility: Development, Characterisation and Caco-2 Cell Uptake.","authors":"Arshad Ali Khan, Safia Akhtar, Yogesh Yadav, Atiya Akhtar, Walla Alelwani, Azzah M Bannunah, Syed Mahmood","doi":"10.2174/1567201819666220817111054","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The antiretroviral protease inhibitor drug, lopinavir (LPV), is used to treat HIV-1 infection. LPV is known to have limited oral bioavailability, which may be attributed to its poor aqueous solubility, low efficacy and high first-pass metabolism. Self-nanoemulsifying drug delivery systems (SNEDDS) for LPV have been developed and optimised to counter the current issues.</p><p><strong>Methods: </strong>The titration method was used to prepare LPV-loaded SNEDDS (LPV-SNEDDS). Six different pseudo-ternary phase diagrams were constructed to identify the nanoemulsifying region. The developed formulations were chosen in terms of globule size < 100 nm, dispersity ≤ 0.5, dispersibility (Grade A) and% transmittance > 85. Heating-cooling cycle, freeze-thaw cycle, and centrifugation studies were performed to confirm the stability of the developed SNEDDS.</p><p><strong>Results: </strong>The final LPV-SNEDDS (L-14) droplet size was 58.18 ± 0.62 nm, with polydispersity index, zeta potential, and entrapment efficiency (EE%) values of 0.326 ± 0.005, -22.08 ± 1.2 mV, and 98.93 ± 1.18%, respectively. According to high-resolution transmission electron microscopy (HRTEM) analysis, the droplets in the optimised formulation were < 60 nm in size. The selected SNEDDS released nearly 99% of the LPV within 30 min, which was significantly (p < 0.05) higher than the LPV-suspension in methylcellulose (0.5% w/v). It indicates the potential use of SNEDDS to enhance the solubility of LPV, which eventually could help improve the oral bioavailability of LPV. The Caco-2 cellular uptake study showed a significantly (p < 0.05) higher LPV uptake from the SNEEDS (LPV-SNEDDS-L-14) than the free LPV (LPV-suspension).</p><p><strong>Conclusion: </strong>The LPV-SNEDDS could be a potential carrier for LPV oral delivery.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":"20 10","pages":"1474-1486"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567201819666220817111054","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 3
Abstract
Background: The antiretroviral protease inhibitor drug, lopinavir (LPV), is used to treat HIV-1 infection. LPV is known to have limited oral bioavailability, which may be attributed to its poor aqueous solubility, low efficacy and high first-pass metabolism. Self-nanoemulsifying drug delivery systems (SNEDDS) for LPV have been developed and optimised to counter the current issues.
Methods: The titration method was used to prepare LPV-loaded SNEDDS (LPV-SNEDDS). Six different pseudo-ternary phase diagrams were constructed to identify the nanoemulsifying region. The developed formulations were chosen in terms of globule size < 100 nm, dispersity ≤ 0.5, dispersibility (Grade A) and% transmittance > 85. Heating-cooling cycle, freeze-thaw cycle, and centrifugation studies were performed to confirm the stability of the developed SNEDDS.
Results: The final LPV-SNEDDS (L-14) droplet size was 58.18 ± 0.62 nm, with polydispersity index, zeta potential, and entrapment efficiency (EE%) values of 0.326 ± 0.005, -22.08 ± 1.2 mV, and 98.93 ± 1.18%, respectively. According to high-resolution transmission electron microscopy (HRTEM) analysis, the droplets in the optimised formulation were < 60 nm in size. The selected SNEDDS released nearly 99% of the LPV within 30 min, which was significantly (p < 0.05) higher than the LPV-suspension in methylcellulose (0.5% w/v). It indicates the potential use of SNEDDS to enhance the solubility of LPV, which eventually could help improve the oral bioavailability of LPV. The Caco-2 cellular uptake study showed a significantly (p < 0.05) higher LPV uptake from the SNEEDS (LPV-SNEDDS-L-14) than the free LPV (LPV-suspension).
Conclusion: The LPV-SNEDDS could be a potential carrier for LPV oral delivery.
期刊介绍:
Current Drug Delivery aims to publish peer-reviewed articles, research articles, short and in-depth reviews, and drug clinical trials studies in the rapidly developing field of drug delivery. Modern drug research aims to build delivery properties of a drug at the design phase, however in many cases this idea cannot be met and the development of delivery systems becomes as important as the development of the drugs themselves.
The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.
The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.