Suresh L Mehta, TaeHee Kim, Bharath Chelluboina, Raghu Vemuganti
{"title":"Tau and GSK-3β are Critical Contributors to α-Synuclein-Mediated Post-Stroke Brain Damage.","authors":"Suresh L Mehta, TaeHee Kim, Bharath Chelluboina, Raghu Vemuganti","doi":"10.1007/s12017-022-08731-0","DOIUrl":null,"url":null,"abstract":"<p><p>Post-stroke secondary brain damage is significantly influenced by the induction and accumulation of α-Synuclein (α-Syn). α-Syn-positive inclusions are often present in tauopathies and elevated tau levels and phosphorylation promotes neurodegeneration. Glycogen synthase kinase 3β (GSK-3β) is a known promoter of tau phosphorylation. We currently evaluated the interaction of α-Syn with GSK-3β and tau in post-ischemic mouse brain. Transient focal ischemia led to increased cerebral protein-protein interaction of α-Syn with both GSK-3β and tau and elevated tau phosphorylation. Treatment with a GSK-3β inhibitor prevented post-ischemic tau phosphorylation. Furthermore, α-Syn interaction was observed to be crucial for post-ischemic GSK-3β-dependent tau hyperphosphorylation as it was not seen in α-Syn knockout mice. Moreover, tau knockout mice show significantly smaller brain damage after transient focal ischemia. Overall, the present study indicates that GSK-3β catalyzes the α-Syn-dependent tau phosphorylation and preventing this interaction is crucial to limit post-ischemic secondary brain damage.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249510/pdf/nihms-1895702.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-022-08731-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Post-stroke secondary brain damage is significantly influenced by the induction and accumulation of α-Synuclein (α-Syn). α-Syn-positive inclusions are often present in tauopathies and elevated tau levels and phosphorylation promotes neurodegeneration. Glycogen synthase kinase 3β (GSK-3β) is a known promoter of tau phosphorylation. We currently evaluated the interaction of α-Syn with GSK-3β and tau in post-ischemic mouse brain. Transient focal ischemia led to increased cerebral protein-protein interaction of α-Syn with both GSK-3β and tau and elevated tau phosphorylation. Treatment with a GSK-3β inhibitor prevented post-ischemic tau phosphorylation. Furthermore, α-Syn interaction was observed to be crucial for post-ischemic GSK-3β-dependent tau hyperphosphorylation as it was not seen in α-Syn knockout mice. Moreover, tau knockout mice show significantly smaller brain damage after transient focal ischemia. Overall, the present study indicates that GSK-3β catalyzes the α-Syn-dependent tau phosphorylation and preventing this interaction is crucial to limit post-ischemic secondary brain damage.
脑卒中后继发性脑损伤在很大程度上受到α-突触核蛋白(α-Syn)的诱导和积累的影响。α-Syn阳性内含物经常出现在tau病中,tau水平的升高和磷酸化促进了神经退行性变。糖原合成酶激酶 3β(GSK-3β)是一种已知的 tau 磷酸化促进因子。我们目前评估了缺血后小鼠大脑中α-Syn与GSK-3β和tau的相互作用。短暂的局灶性缺血导致α-Syn与GSK-3β和tau的脑蛋白-蛋白相互作用增加,tau磷酸化升高。使用 GSK-3β 抑制剂可防止缺血后 tau 的磷酸化。此外,还观察到α-Syn相互作用对缺血后依赖于GSK-3β的tau过度磷酸化至关重要,因为在α-Syn基因敲除小鼠中看不到这种作用。此外,tau基因敲除小鼠在短暂局灶性缺血后的脑损伤明显较小。总之,本研究表明,GSK-3β催化了α-Syn依赖的tau磷酸化,而防止这种相互作用对限制缺血后继发性脑损伤至关重要。