{"title":"Who should see the patient? on deviations from preferred patient-provider assignments in hospitals.","authors":"Mariam K Atkinson, Soroush Saghafian","doi":"10.1007/s10729-022-09628-x","DOIUrl":null,"url":null,"abstract":"<p><p>In various organizations including hospitals, individuals are not forced to follow specific assignments, and thus, deviations from preferred task assignments are common. This is due to the conventional wisdom that professionals should be given the flexibility to deviate from preferred assignments as needed. It is unclear, however, whether and when this conventional wisdom is true. We use evidence on the assignments of generalist and specialists to patients in our partner hospital (a children's hospital), and generate insights into whether and when hospital administrators should disallow such flexibility. We do so by identifying 73 top medical diagnoses and using detailed patient-level electronic medical record (EMR) data of more than 4,700 hospitalizations. In parallel, we conduct a survey of medical experts and utilized it to identify the preferred provider type that should have been assigned to each patient. Using these two sources of data, we examine the consequence of deviations from preferred provider assignments on three sets of performance measures: operational efficiency (measured by length of stay), quality of care (measured by 30-day readmissions and adverse events), and cost (measured by total charges). We find that deviating from preferred assignments is beneficial for task types (patients' diagnosis in our setting) that are either (a) well-defined (improving operational efficiency and costs), or (b) require high contact (improving costs and adverse events, though at the expense of lower operational efficiency). For other task types (e.g., highly complex or resource-intensive tasks), we observe that deviations are either detrimental or yield no tangible benefits, and thus, hospitals should try to eliminate them (e.g., by developing and enforcing assignment guidelines). To understand the causal mechanism behind our results, we make use of mediation analysis and find that utilizing advanced imaging (e.g., MRIs, CT scans, or nuclear radiology) plays an important role in how deviations impact performance outcomes. Our findings also provide evidence for a \"no free lunch\" theorem: while for some task types, deviations are beneficial for certain performance outcomes, they can simultaneously degrade performance in terms of other dimensions. To provide clear recommendations for hospital administrators, we also consider counterfactual scenarios corresponding to imposing the preferred assignments fully or partially, and perform cost-effectiveness analyses. Our results indicate that enforcing the preferred assignments either for all tasks or only for resource-intensive tasks is cost-effective, with the latter being the superior policy. Finally, by comparing deviations during weekdays and weekends, early shifts and late shifts, and high congestion and low congestion periods, our results shed light on some environmental conditions under which deviations occur more in practice.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 2","pages":"165-199"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-022-09628-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 2
Abstract
In various organizations including hospitals, individuals are not forced to follow specific assignments, and thus, deviations from preferred task assignments are common. This is due to the conventional wisdom that professionals should be given the flexibility to deviate from preferred assignments as needed. It is unclear, however, whether and when this conventional wisdom is true. We use evidence on the assignments of generalist and specialists to patients in our partner hospital (a children's hospital), and generate insights into whether and when hospital administrators should disallow such flexibility. We do so by identifying 73 top medical diagnoses and using detailed patient-level electronic medical record (EMR) data of more than 4,700 hospitalizations. In parallel, we conduct a survey of medical experts and utilized it to identify the preferred provider type that should have been assigned to each patient. Using these two sources of data, we examine the consequence of deviations from preferred provider assignments on three sets of performance measures: operational efficiency (measured by length of stay), quality of care (measured by 30-day readmissions and adverse events), and cost (measured by total charges). We find that deviating from preferred assignments is beneficial for task types (patients' diagnosis in our setting) that are either (a) well-defined (improving operational efficiency and costs), or (b) require high contact (improving costs and adverse events, though at the expense of lower operational efficiency). For other task types (e.g., highly complex or resource-intensive tasks), we observe that deviations are either detrimental or yield no tangible benefits, and thus, hospitals should try to eliminate them (e.g., by developing and enforcing assignment guidelines). To understand the causal mechanism behind our results, we make use of mediation analysis and find that utilizing advanced imaging (e.g., MRIs, CT scans, or nuclear radiology) plays an important role in how deviations impact performance outcomes. Our findings also provide evidence for a "no free lunch" theorem: while for some task types, deviations are beneficial for certain performance outcomes, they can simultaneously degrade performance in terms of other dimensions. To provide clear recommendations for hospital administrators, we also consider counterfactual scenarios corresponding to imposing the preferred assignments fully or partially, and perform cost-effectiveness analyses. Our results indicate that enforcing the preferred assignments either for all tasks or only for resource-intensive tasks is cost-effective, with the latter being the superior policy. Finally, by comparing deviations during weekdays and weekends, early shifts and late shifts, and high congestion and low congestion periods, our results shed light on some environmental conditions under which deviations occur more in practice.
期刊介绍:
Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged.
Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate.
Editorial statements for the individual departments are provided below.
Health Care Analytics
Departmental Editors:
Margrét Bjarnadóttir, University of Maryland
Nan Kong, Purdue University
With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes.
The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics.
Health Care Operations Management
Departmental Editors:
Nilay Tanik Argon, University of North Carolina at Chapel Hill
Bob Batt, University of Wisconsin
The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society.
Health Care Management Science Practice
Departmental Editor:
Vikram Tiwari, Vanderbilt University Medical Center
The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful.
Health Care Productivity Analysis
Departmental Editor:
Jonas Schreyögg, University of Hamburg
The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity.
Public Health Policy and Medical Decision Making
Departmental Editors:
Ebru Bish, University of Alabama
Julie L. Higle, University of Southern California
The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems.
The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that:
Study high-impact problems involving health policy, treatment planning and design, and clinical applications;
Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines;
Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations.
Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies.
Emerging Topics
Departmental Editor:
Alec Morton, University of Strathclyde
Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.