Regression models for censored time-to-event data using infinitesimal jack-knife pseudo-observations, with applications to left-truncation.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-07-01 DOI:10.1007/s10985-023-09597-5
Erik T Parner, Per K Andersen, Morten Overgaard
{"title":"Regression models for censored time-to-event data using infinitesimal jack-knife pseudo-observations, with applications to left-truncation.","authors":"Erik T Parner,&nbsp;Per K Andersen,&nbsp;Morten Overgaard","doi":"10.1007/s10985-023-09597-5","DOIUrl":null,"url":null,"abstract":"<p><p>Jack-knife pseudo-observations have in recent decades gained popularity in regression analysis for various aspects of time-to-event data. A limitation of the jack-knife pseudo-observations is that their computation is time consuming, as the base estimate needs to be recalculated when leaving out each observation. We show that jack-knife pseudo-observations can be closely approximated using the idea of the infinitesimal jack-knife residuals. The infinitesimal jack-knife pseudo-observations are much faster to compute than jack-knife pseudo-observations. A key assumption of the unbiasedness of the jack-knife pseudo-observation approach is on the influence function of the base estimate. We reiterate why the condition on the influence function is needed for unbiased inference and show that the condition is not satisfied for the Kaplan-Meier base estimate in a left-truncated cohort. We present a modification of the infinitesimal jack-knife pseudo-observations that provide unbiased estimates in a left-truncated cohort. The computational speed and medium and large sample properties of the jack-knife pseudo-observations and infinitesimal jack-knife pseudo-observation are compared and we present an application of the modified infinitesimal jack-knife pseudo-observations in a left-truncated cohort of Danish patients with diabetes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258172/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09597-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Jack-knife pseudo-observations have in recent decades gained popularity in regression analysis for various aspects of time-to-event data. A limitation of the jack-knife pseudo-observations is that their computation is time consuming, as the base estimate needs to be recalculated when leaving out each observation. We show that jack-knife pseudo-observations can be closely approximated using the idea of the infinitesimal jack-knife residuals. The infinitesimal jack-knife pseudo-observations are much faster to compute than jack-knife pseudo-observations. A key assumption of the unbiasedness of the jack-knife pseudo-observation approach is on the influence function of the base estimate. We reiterate why the condition on the influence function is needed for unbiased inference and show that the condition is not satisfied for the Kaplan-Meier base estimate in a left-truncated cohort. We present a modification of the infinitesimal jack-knife pseudo-observations that provide unbiased estimates in a left-truncated cohort. The computational speed and medium and large sample properties of the jack-knife pseudo-observations and infinitesimal jack-knife pseudo-observation are compared and we present an application of the modified infinitesimal jack-knife pseudo-observations in a left-truncated cohort of Danish patients with diabetes.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用无限小锯齿伪观测的截尾时间到事件数据的回归模型,以及左截断的应用。
近几十年来,折刀伪观测在时间到事件数据的各个方面的回归分析中得到了普及。折刀伪观测值的一个限制是计算时间长,因为当忽略每个观测值时需要重新计算基本估计。我们证明了利用无限小杰克刀残差的思想可以近似地逼近杰克刀伪观测值。无限小的折刀伪观测值的计算速度比折刀伪观测值快得多。叠刀伪观测方法无偏性的一个关键假设是对基估计的影响函数。我们重申了为什么在无偏推断中需要影响函数的条件,并表明在左截尾队列中Kaplan-Meier基估计不满足该条件。我们提出了一种修正的无限小锯齿伪观测,在左截尾队列中提供无偏估计。比较了折刀伪观测和无穷小折刀伪观测的计算速度和中、大样本性质,并介绍了改进的无穷小折刀伪观测在丹麦糖尿病患者左截群中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1