Interpretable AI for bio-medical applications.

Anoop Sathyan, Abraham Itzhak Weinberg, Kelly Cohen
{"title":"Interpretable AI for bio-medical applications.","authors":"Anoop Sathyan,&nbsp;Abraham Itzhak Weinberg,&nbsp;Kelly Cohen","doi":"10.20517/ces.2022.41","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the use of two popular explainability tools called Local Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive exPlanations (SHAP) to explain the predictions made by a trained deep neural network. The deep neural network used in this work is trained on the UCI Breast Cancer Wisconsin dataset. The neural network is used to classify the masses found in patients as benign or malignant based on 30 features that describe the mass. LIME and SHAP are then used to explain the individual predictions made by the trained neural network model. The explanations provide further insights into the relationship between the input features and the predictions. SHAP methodology additionally provides a more holistic view of the effect of the inputs on the output predictions. The results also present the commonalities between the insights gained using LIME and SHAP. Although this paper focuses on the use of deep neural networks trained on UCI Breast Cancer Wisconsin dataset, the methodology can be applied to other neural networks and architectures trained on other applications. The deep neural network trained in this work provides a high level of accuracy. Analyzing the model using LIME and SHAP adds the much desired benefit of providing explanations for the recommendations made by the trained model.</p>","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074303/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex engineering systems (Alhambra, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ces.2022.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents the use of two popular explainability tools called Local Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive exPlanations (SHAP) to explain the predictions made by a trained deep neural network. The deep neural network used in this work is trained on the UCI Breast Cancer Wisconsin dataset. The neural network is used to classify the masses found in patients as benign or malignant based on 30 features that describe the mass. LIME and SHAP are then used to explain the individual predictions made by the trained neural network model. The explanations provide further insights into the relationship between the input features and the predictions. SHAP methodology additionally provides a more holistic view of the effect of the inputs on the output predictions. The results also present the commonalities between the insights gained using LIME and SHAP. Although this paper focuses on the use of deep neural networks trained on UCI Breast Cancer Wisconsin dataset, the methodology can be applied to other neural networks and architectures trained on other applications. The deep neural network trained in this work provides a high level of accuracy. Analyzing the model using LIME and SHAP adds the much desired benefit of providing explanations for the recommendations made by the trained model.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生物医学应用的可解释人工智能。
本文介绍了使用两种流行的可解释性工具,即局部可解释模型不可知论解释(LIME)和Shapley加性解释(SHAP)来解释由训练有素的深度神经网络做出的预测。在这项工作中使用的深度神经网络是在UCI乳腺癌威斯康星州数据集上训练的。神经网络用于根据描述肿块的30个特征将患者发现的肿块分类为良性或恶性。然后使用LIME和SHAP来解释经过训练的神经网络模型所做的单个预测。这些解释为输入特征和预测之间的关系提供了进一步的见解。此外,SHAP方法还对投入对产出预测的影响提供了更全面的看法。结果还显示了使用LIME和SHAP获得的见解之间的共性。虽然本文关注的是在UCI乳腺癌威斯康星州数据集上训练的深度神经网络的使用,但该方法可以应用于在其他应用程序上训练的其他神经网络和架构。在这项工作中训练的深度神经网络提供了高水平的准确性。使用LIME和SHAP分析模型增加了为训练模型提出的建议提供解释的非常期望的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Event-triggered model predictive tracking control of aero-engine with varying prediction horizon AWF-YOLO: enhanced underwater object detection with adaptive weighted feature pyramid network Model predictive control of multi-objective adaptive cruise system based on extension theory Event-triggered state estimation for complex networks under deception attacks: a partial-nodes-based approach Rolling bearing fault diagnosis method based on 2D grayscale images and Wasserstein Generative Adversarial Nets under unbalanced sample condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1