Zhi-Yu Chen, Huan-Huan Huang, Qiao-Chu Li, Fang-Biao Zhan, Ling-Bang Wang, Tao He, Chao-Hua Yang, Yang Wang, Yuan Zhang, Zheng-Xue Quan
{"title":"Capsaicin Reduces Cancer Stemness and Inhibits Metastasis by Downregulating <i>SOX2</i> and <i>EZH2</i> in Osteosarcoma.","authors":"Zhi-Yu Chen, Huan-Huan Huang, Qiao-Chu Li, Fang-Biao Zhan, Ling-Bang Wang, Tao He, Chao-Hua Yang, Yang Wang, Yuan Zhang, Zheng-Xue Quan","doi":"10.1142/S0192415X23500489","DOIUrl":null,"url":null,"abstract":"<p><p>Metastasis of osteosarcoma is an important adverse factor affecting patients' survival, and cancer stemness is the crucial cause of distant metastasis. Capsaicin, the main component of pepper, has been proven in our previous work to inhibit osteosarcoma proliferation and enhance its drug sensitivity to cisplatin at low concentrations. This study aims to further explore the anti-osteosarcoma effect of capsaicin at low concentrations (100[Formula: see text][Formula: see text]M, 24[Formula: see text]h) on stemness and metastasis. The stemness of human osteosarcoma (HOS) cells was decreased significantly by capsaicin treatment. Additionally, the capsaicin treatment's inhibition of cancer stem cells (CSCs) was dose-dependent on both sphere formation and sphere size. Meanwhile, capsaicin inhibited invasion and migration, which might be associated with 25 metastasis-related genes. <i>SOX2</i> and <i>EZH2</i> were the most two relevant stemness factors for capsaicin's dose-dependent inhibition of osteosarcoma. The mRNAsi score of HOS stemness inhibited by capsaicin was strongly correlated with most metastasis-related genes of osteosarcoma. Capsaicin downregulated six metastasis-promoting genes and up-regulated three metastasis-inhibiting genes, which significantly affected the overall survival and/or disease-free survival of patients. In addition, the CSC re-adhesion scratch assay demonstrated that capsaicin inhibited the migration ability of osteosarcoma by inhibiting its stemness. Overall, capsaicin exerts a significant inhibitory effect on the stemness expression and metastatic ability of osteosarcoma. Moreover, it can inhibit the migratory ability of osteosarcoma by suppressing its stemness via downregulating <i>SOX2</i> and <i>EZH2</i>. Therefore, capsaicin is expected to be a potential drug against osteosarcoma metastasis due to its ability to inhibit cancer stemness.</p>","PeriodicalId":50814,"journal":{"name":"American Journal of Chinese Medicine","volume":"51 4","pages":"1041-1066"},"PeriodicalIF":4.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/S0192415X23500489","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 3
Abstract
Metastasis of osteosarcoma is an important adverse factor affecting patients' survival, and cancer stemness is the crucial cause of distant metastasis. Capsaicin, the main component of pepper, has been proven in our previous work to inhibit osteosarcoma proliferation and enhance its drug sensitivity to cisplatin at low concentrations. This study aims to further explore the anti-osteosarcoma effect of capsaicin at low concentrations (100[Formula: see text][Formula: see text]M, 24[Formula: see text]h) on stemness and metastasis. The stemness of human osteosarcoma (HOS) cells was decreased significantly by capsaicin treatment. Additionally, the capsaicin treatment's inhibition of cancer stem cells (CSCs) was dose-dependent on both sphere formation and sphere size. Meanwhile, capsaicin inhibited invasion and migration, which might be associated with 25 metastasis-related genes. SOX2 and EZH2 were the most two relevant stemness factors for capsaicin's dose-dependent inhibition of osteosarcoma. The mRNAsi score of HOS stemness inhibited by capsaicin was strongly correlated with most metastasis-related genes of osteosarcoma. Capsaicin downregulated six metastasis-promoting genes and up-regulated three metastasis-inhibiting genes, which significantly affected the overall survival and/or disease-free survival of patients. In addition, the CSC re-adhesion scratch assay demonstrated that capsaicin inhibited the migration ability of osteosarcoma by inhibiting its stemness. Overall, capsaicin exerts a significant inhibitory effect on the stemness expression and metastatic ability of osteosarcoma. Moreover, it can inhibit the migratory ability of osteosarcoma by suppressing its stemness via downregulating SOX2 and EZH2. Therefore, capsaicin is expected to be a potential drug against osteosarcoma metastasis due to its ability to inhibit cancer stemness.
期刊介绍:
The American Journal of Chinese Medicine, which is defined in its broadest sense possible, publishes original articles and essays relating to traditional or ethnomedicine of all cultures. Areas of particular interest include:
Basic scientific and clinical research in indigenous medical techniques, therapeutic procedures, medicinal plants, and traditional medical theories and concepts;
Multidisciplinary study of medical practice and health care, especially from historical, cultural, public health, and socioeconomic perspectives;
International policy implications of comparative studies of medicine in all cultures, including such issues as health in developing countries, affordability and transferability of health-care techniques and concepts;
Translating scholarly ancient texts or modern publications on ethnomedicine.
The American Journal of Chinese Medicine will consider for publication a broad range of scholarly contributions, including original scientific research papers, review articles, editorial comments, social policy statements, brief news items, bibliographies, research guides, letters to the editors, book reviews, and selected reprints.