The mechanism of sodium butyrate on the growth of mouse B16 melanoma cells by inhibiting the differentiation of M2-type macrophages and down-regulating the expressions of VEGF and TGF-β.

IF 6.5 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology & Genetic Engineering Reviews Pub Date : 2024-11-01 Epub Date: 2023-04-17 DOI:10.1080/02648725.2023.2202994
Zhenhua Jia, Jun Jin, Wei Wang, Xiaobo Wang
{"title":"The mechanism of sodium butyrate on the growth of mouse B16 melanoma cells by inhibiting the differentiation of M2-type macrophages and down-regulating the expressions of VEGF and TGF-β.","authors":"Zhenhua Jia, Jun Jin, Wei Wang, Xiaobo Wang","doi":"10.1080/02648725.2023.2202994","DOIUrl":null,"url":null,"abstract":"<p><p>Melanoma is a highly malignant cancer with a high differentiation potential and metastatic capacity. Sodium butyrate, known for its anti-cancer activity, is used in various types of solid tumors. This study aimed to investigate the effects of sodium butyrate on B16 melanoma cells using in vitro and in vivo mouse models. The study utilized MTT assay, flow cytometry, and immunoblot analysis. Mice were treated with normal saline (control) or 1 mM, 2 mM, 3 mM, or 5 mM sodium butyrate. Results showed that cell viabilities were significantly reduced in 2 mM, 3 mM, and 5 mM sodium butyrate groups after 24 to 48 hours (<i>p</i> < 0.01 for all). Moreover, sodium butyrate exhibited a tumor suppression effect that was time-dependent and lasted for 30 days (<i>p</i> < 0.01 for all). A significant tumor suppression effect was observed in the case of 5 mM sodium butyrate after 30 days (<i>p</i> < 0.001 for all). As compared to control (no sodium butyrate), tumor-associated macrophages were decreased in 2 mM, 3 mM, and 5 mM sodium butyrate groups (<0.01 for all). The maximum reduction was observed in 5 mM sodium butyrate groups. Sodium borate decreased the release of interleukin-10, vascular endothelial growth factor, transforming growth factor beta, and β-actin (<0.01 for all). A significant reduction was observed in the case of 5 mM concentration. Overall, these findings suggest that sodium butyrate is effective in the treatment of melanoma and may offer a promising new avenue for melanoma therapy.</p>","PeriodicalId":55355,"journal":{"name":"Biotechnology & Genetic Engineering Reviews","volume":" ","pages":"2971-2981"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology & Genetic Engineering Reviews","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/02648725.2023.2202994","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Melanoma is a highly malignant cancer with a high differentiation potential and metastatic capacity. Sodium butyrate, known for its anti-cancer activity, is used in various types of solid tumors. This study aimed to investigate the effects of sodium butyrate on B16 melanoma cells using in vitro and in vivo mouse models. The study utilized MTT assay, flow cytometry, and immunoblot analysis. Mice were treated with normal saline (control) or 1 mM, 2 mM, 3 mM, or 5 mM sodium butyrate. Results showed that cell viabilities were significantly reduced in 2 mM, 3 mM, and 5 mM sodium butyrate groups after 24 to 48 hours (p < 0.01 for all). Moreover, sodium butyrate exhibited a tumor suppression effect that was time-dependent and lasted for 30 days (p < 0.01 for all). A significant tumor suppression effect was observed in the case of 5 mM sodium butyrate after 30 days (p < 0.001 for all). As compared to control (no sodium butyrate), tumor-associated macrophages were decreased in 2 mM, 3 mM, and 5 mM sodium butyrate groups (<0.01 for all). The maximum reduction was observed in 5 mM sodium butyrate groups. Sodium borate decreased the release of interleukin-10, vascular endothelial growth factor, transforming growth factor beta, and β-actin (<0.01 for all). A significant reduction was observed in the case of 5 mM concentration. Overall, these findings suggest that sodium butyrate is effective in the treatment of melanoma and may offer a promising new avenue for melanoma therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丁酸钠通过抑制 M2 型巨噬细胞分化和下调血管内皮生长因子及 TGF-β 的表达对小鼠 B16 黑色素瘤细胞生长的作用机制。
黑色素瘤是一种高度恶性的癌症,具有高度分化潜能和转移能力。丁酸钠以其抗癌活性而闻名,被用于各种类型的实体瘤。本研究旨在利用体外和体内小鼠模型研究丁酸钠对 B16 黑色素瘤细胞的影响。研究采用了 MTT 试验、流式细胞术和免疫印迹分析。小鼠分别接受生理盐水(对照组)或 1 mM、2 mM、3 mM 或 5 mM 丁酸钠处理。结果表明,24 至 48 小时后,2 mM、3 mM 和 5 mM 丁酸钠组的细胞活力明显降低(p p p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology & Genetic Engineering Reviews
Biotechnology & Genetic Engineering Reviews BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
6.50
自引率
3.10%
发文量
33
期刊介绍: Biotechnology & Genetic Engineering Reviews publishes major invited review articles covering important developments in industrial, agricultural and medical applications of biotechnology.
期刊最新文献
Application of Shouwu Yizhi prescription in decubation of patients with ischemic stroke. Analysis of non-targeted serum metabolomics in patients with chronic kidney disease and hyperuricemia. Clinical effect of laparoscopic cholecystectomy in the treatment of chronic cholecystitis with gallstones. Evaluating the value of progressive muscle relaxation therapy for patients with lumbar disc herniation after surgery based on a difference-in-differences model. Regulation of TREM2 on BV2 inflammation through PI3K/AKT/mTOR pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1