Muhammad Yasir, Jinyoung Park, Eun-Taek Han, Won Sun Park, Jin-Hee Han, Yong-Soo Kwon, Hee-Jae Lee, Wanjoo Chun
{"title":"Virtual Screening of Flavonoids against <i>Plasmodium vivax</i> Duffy Binding Protein Utilizing Molecular Docking and Molecular Dynamic Simulation.","authors":"Muhammad Yasir, Jinyoung Park, Eun-Taek Han, Won Sun Park, Jin-Hee Han, Yong-Soo Kwon, Hee-Jae Lee, Wanjoo Chun","doi":"10.2174/1573409919666230626140339","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong><i>Plasmodium vivax (P. vivax)</i> is one of the highly prevalent human malaria parasites. Due to the presence of extravascular reservoirs, <i>P. vivax</i> is extremely challenging to manage and eradicate. Traditionally, flavonoids have been widely used to combat various diseases. Recently, biflavonoids were discovered to be effective against <i>Plasmodium falciparum</i>.</p><p><strong>Methods: </strong>In this study, <i>in silico</i> approaches were utilized to inhibit Duffy binding protein (DBP), responsible for Plasmodium invasion into red blood cells (RBC). The interaction of flavonoid molecules with the Duffy antigen receptor for chemokines (DARC) binding site of DBP was investigated using a molecular docking approach. Furthermore, molecular dynamic simulation studies were carried out to study the stability of top-docked complexes.</p><p><strong>Results: </strong>The results showed the effectiveness of flavonoids, such as daidzein, genistein, kaempferol, and quercetin, in the DBP binding site. These flavonoids were found to bind in the active region of DBP. Furthermore, the stability of these four ligands was maintained throughout the 50 ns simulation, maintaining stable hydrogen bond formation with the active site residues of DBP.</p><p><strong>Conclusion: </strong>The present study suggests that flavonoids might be good candidates and novel agents against DBP-mediated RBC invasion of <i>P. vivax</i> and can be further analyzed in in vitro studies.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"616-627"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1573409919666230626140339","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Plasmodium vivax (P. vivax) is one of the highly prevalent human malaria parasites. Due to the presence of extravascular reservoirs, P. vivax is extremely challenging to manage and eradicate. Traditionally, flavonoids have been widely used to combat various diseases. Recently, biflavonoids were discovered to be effective against Plasmodium falciparum.
Methods: In this study, in silico approaches were utilized to inhibit Duffy binding protein (DBP), responsible for Plasmodium invasion into red blood cells (RBC). The interaction of flavonoid molecules with the Duffy antigen receptor for chemokines (DARC) binding site of DBP was investigated using a molecular docking approach. Furthermore, molecular dynamic simulation studies were carried out to study the stability of top-docked complexes.
Results: The results showed the effectiveness of flavonoids, such as daidzein, genistein, kaempferol, and quercetin, in the DBP binding site. These flavonoids were found to bind in the active region of DBP. Furthermore, the stability of these four ligands was maintained throughout the 50 ns simulation, maintaining stable hydrogen bond formation with the active site residues of DBP.
Conclusion: The present study suggests that flavonoids might be good candidates and novel agents against DBP-mediated RBC invasion of P. vivax and can be further analyzed in in vitro studies.
期刊介绍:
Aims & Scope
Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design.
Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews, original research articles and letter articles written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, theoretical chemistry; computational chemistry; computer and molecular graphics; molecular modeling; protein engineering; drug design; expert systems; general structure-property relationships; molecular dynamics; chemical database development and usage etc., providing excellent rationales for drug development.