{"title":"Blockchain-enabled healthcare monitoring system for early Monkeypox detection.","authors":"Aditya Gupta, Monu Bhagat, Vibha Jain","doi":"10.1007/s11227-023-05288-y","DOIUrl":null,"url":null,"abstract":"<p><p>The recent emergence of monkeypox poses a life-threatening challenge to humans and has become one of the global health concerns after COVID-19. Currently, machine learning-based smart healthcare monitoring systems have demonstrated significant potential in image-based diagnosis including brain tumor identification and lung cancer diagnosis. In a similar fashion, the applications of machine learning can be utilized for the early identification of monkeypox cases. However, sharing critical health information with various actors such as patients, doctors, and other healthcare professionals in a secure manner remains a research challenge. Motivated by this fact, our paper presents a blockchain-enabled conceptual framework for the early detection and classification of monkeypox using transfer learning. The proposed framework is experimentally demonstrated in Python 3.9 using a monkeypox dataset of 1905 images obtained from the GitHub repository. To validate the effectiveness of the proposed model, various performance estimators, namely accuracy, recall, precision, and F1-score, are employed. The performance of different transfer learning models, namely Xception, VGG19, and VGG16, is compared against the presented methodology. Based on the comparison, it is evident that the proposed methodology effectively detects and classifies the monkeypox disease with a classification accuracy of 98.80%. In future, multiple skin diseases such as measles and chickenpox can be diagnosed using the proposed model on the skin lesion datasets.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":" ","pages":"1-25"},"PeriodicalIF":2.5000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10118230/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-023-05288-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 3
Abstract
The recent emergence of monkeypox poses a life-threatening challenge to humans and has become one of the global health concerns after COVID-19. Currently, machine learning-based smart healthcare monitoring systems have demonstrated significant potential in image-based diagnosis including brain tumor identification and lung cancer diagnosis. In a similar fashion, the applications of machine learning can be utilized for the early identification of monkeypox cases. However, sharing critical health information with various actors such as patients, doctors, and other healthcare professionals in a secure manner remains a research challenge. Motivated by this fact, our paper presents a blockchain-enabled conceptual framework for the early detection and classification of monkeypox using transfer learning. The proposed framework is experimentally demonstrated in Python 3.9 using a monkeypox dataset of 1905 images obtained from the GitHub repository. To validate the effectiveness of the proposed model, various performance estimators, namely accuracy, recall, precision, and F1-score, are employed. The performance of different transfer learning models, namely Xception, VGG19, and VGG16, is compared against the presented methodology. Based on the comparison, it is evident that the proposed methodology effectively detects and classifies the monkeypox disease with a classification accuracy of 98.80%. In future, multiple skin diseases such as measles and chickenpox can be diagnosed using the proposed model on the skin lesion datasets.
期刊介绍:
The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs.
Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.