Youngshin Lim, Il-Taeg Cho, Jeffrey A. Golden, Ginam Cho
{"title":"Generation of FLAG-tagged Arx knock-in mouse model","authors":"Youngshin Lim, Il-Taeg Cho, Jeffrey A. Golden, Ginam Cho","doi":"10.1002/dvg.23479","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Aristaless-related homeobox (ARX) is a paired-like homeodomain transcription factor playing important roles in brain development. Patients with mutations in <i>ARX</i> have a spectrum of neurodevelopmental disorders such as epilepsy, intellectual disability, and autism spectrum disorder, with or without structural abnormalities of the brain such as lissencephaly (smooth brain), microcephaly (small brain), and/or agenesis of the corpus callosum. Mouse models have provided important clues on the pathophysiologic roles of ARX in these disorders. However, successfully isolating specific <i>in vivo</i> complexes of ARX, with DNA and proteins, has remained as a challenge. To facilitate <i>in vivo</i> detection of ARX complexes, we generated a mouse line containing one epitope of FLAG-tag (1 × FLAG) targeted at the translational start site of the endogenous <i>Arx</i> gene using CRSPR/Cas9 strategy. Homozygous <i>Flag-Arx</i> mice are viable and fertile without gross abnormality, suggesting that the FLAG-tag does not perturb the normal function of ARX. Using a FLAG antibody, we successfully detected ARX with immunofluorescent staining and pulled down ARX in embryonic brain tissues. This <i>Flag-Arx</i> mouse line will be a useful tool to isolate ARX complexes from mouse tissues for many applications.</p>\n </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"genesis","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.23479","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
The Aristaless-related homeobox (ARX) is a paired-like homeodomain transcription factor playing important roles in brain development. Patients with mutations in ARX have a spectrum of neurodevelopmental disorders such as epilepsy, intellectual disability, and autism spectrum disorder, with or without structural abnormalities of the brain such as lissencephaly (smooth brain), microcephaly (small brain), and/or agenesis of the corpus callosum. Mouse models have provided important clues on the pathophysiologic roles of ARX in these disorders. However, successfully isolating specific in vivo complexes of ARX, with DNA and proteins, has remained as a challenge. To facilitate in vivo detection of ARX complexes, we generated a mouse line containing one epitope of FLAG-tag (1 × FLAG) targeted at the translational start site of the endogenous Arx gene using CRSPR/Cas9 strategy. Homozygous Flag-Arx mice are viable and fertile without gross abnormality, suggesting that the FLAG-tag does not perturb the normal function of ARX. Using a FLAG antibody, we successfully detected ARX with immunofluorescent staining and pulled down ARX in embryonic brain tissues. This Flag-Arx mouse line will be a useful tool to isolate ARX complexes from mouse tissues for many applications.
期刊介绍:
As of January 2000, Developmental Genetics was renamed and relaunched as genesis: The Journal of Genetics and Development, with a new scope and Editorial Board. The journal focuses on work that addresses the genetics of development and the fundamental mechanisms of embryological processes in animals and plants. With increased awareness of the interplay between genetics and evolutionary change, particularly during developmental processes, we encourage submission of manuscripts from all ecological niches. The expanded numbers of genomes for which sequencing is being completed will facilitate genetic and genomic examination of developmental issues, even if the model system does not fit the “classical genetic” mold. Therefore, we encourage submission of manuscripts from all species. Other areas of particular interest include: 1) the roles of epigenetics, microRNAs and environment on developmental processes; 2) genome-wide studies; 3) novel imaging techniques for the study of gene expression and cellular function; 4) comparative genetics and genomics and 5) animal models of human genetic and developmental disorders.
genesis presents reviews, full research articles, short research letters, and state-of-the-art technology reports that promote an understanding of the function of genes and the roles they play in complex developmental processes.