Imputation of Non-Response in Height and Weight in the Mexican Health and Aging Study.

Matthew Miller, Alejandra Michaels-Obregón, Karina Orozco Rocha, Rebeca Wong
{"title":"Imputation of Non-Response in Height and Weight in the Mexican Health and Aging Study.","authors":"Matthew Miller,&nbsp;Alejandra Michaels-Obregón,&nbsp;Karina Orozco Rocha,&nbsp;Rebeca Wong","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The way missing data in population surveys are treated can influence research results. Therefore, the aim of this paper is to explain the reasons and procedure for imputing anthropometric data such as height and weight self-reported by individuals in the first four waves of the Mexican Health & Aging Study (MHAS). We highlight the effect of the imputation versus the exclusion of the cases with missing data, by comparing the distribution of these values and their associated effects on the Body Mass Index using a regression model. We conclude that the incorporation of imputed data offers more solid results compared with elimination the cases with missing data. Hence the importance of applying these statistical procedures, with appropriate treatment of the data, making the methodology and the imputed data available to the users by the same source of information, as offered in the MHAS.</p>","PeriodicalId":74642,"journal":{"name":"Realidad, datos y espacio : revista internacional de estadistica y geografia","volume":"13 2","pages":"78-93"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839157/pdf/nihms-1814182.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Realidad, datos y espacio : revista internacional de estadistica y geografia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The way missing data in population surveys are treated can influence research results. Therefore, the aim of this paper is to explain the reasons and procedure for imputing anthropometric data such as height and weight self-reported by individuals in the first four waves of the Mexican Health & Aging Study (MHAS). We highlight the effect of the imputation versus the exclusion of the cases with missing data, by comparing the distribution of these values and their associated effects on the Body Mass Index using a regression model. We conclude that the incorporation of imputed data offers more solid results compared with elimination the cases with missing data. Hence the importance of applying these statistical procedures, with appropriate treatment of the data, making the methodology and the imputed data available to the users by the same source of information, as offered in the MHAS.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
墨西哥健康与老龄化研究中身高和体重无反应的推断。
处理人口调查中缺失数据的方式可能会影响研究结果。因此,本文的目的是解释在墨西哥健康与老龄化研究(MHAS)的前四波中输入个人自我报告的身高和体重等人体测量数据的原因和程序。通过使用回归模型比较这些值的分布及其对体重指数的相关影响,我们强调了插补与排除数据缺失病例的效果。我们得出的结论是,与消除数据缺失的病例相比,纳入估算数据提供了更可靠的结果。因此,应用这些统计程序,适当处理数据,通过MHAS中提供的相同信息来源向用户提供方法和估算数据的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Imputation of Non-Response in Height and Weight in the Mexican Health and Aging Study. Imputation Procedures for Cognitive Variables in the Mexican Health and Aging Study: Evaluating the Bias from Excluding Participants with Missing Data. Attrition in panel surveys in Mexico: The Mexican Health and Aging Study (MHAS). "Vulnerability, Resiliency, and Adaptation: The Health of Latin Americans during the Migration Process to the United States"
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1