Twist-stretch relations in nucleic acids

IF 2.2 4区 生物学 Q3 BIOPHYSICS European Biophysics Journal Pub Date : 2023-06-25 DOI:10.1007/s00249-023-01669-6
Marco Zoli
{"title":"Twist-stretch relations in nucleic acids","authors":"Marco Zoli","doi":"10.1007/s00249-023-01669-6","DOIUrl":null,"url":null,"abstract":"<div><p>Nucleic acids are highly deformable helical molecules constantly stretched, twisted and bent in their biological functioning. Single molecule experiments have shown that double stranded (ds)-RNA and standard ds-DNA have opposite twist-stretch patterns and stretching properties when overwound under a constant applied load. The key structural features of the A-form RNA and B-form DNA helices are here incorporated in a three-dimensional mesoscopic Hamiltonian model which accounts for the radial, bending and twisting fluctuations of the base pairs. Using path integral techniques which sum over the ensemble of the base pair fluctuations, I compute the average helical repeat of the molecules as a function of the load. The obtained twist-stretch relations and stretching properties, for short A- and B-helical fragments, are consistent with the opposite behaviors observed in kilo-base long molecules.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-023-01669-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Nucleic acids are highly deformable helical molecules constantly stretched, twisted and bent in their biological functioning. Single molecule experiments have shown that double stranded (ds)-RNA and standard ds-DNA have opposite twist-stretch patterns and stretching properties when overwound under a constant applied load. The key structural features of the A-form RNA and B-form DNA helices are here incorporated in a three-dimensional mesoscopic Hamiltonian model which accounts for the radial, bending and twisting fluctuations of the base pairs. Using path integral techniques which sum over the ensemble of the base pair fluctuations, I compute the average helical repeat of the molecules as a function of the load. The obtained twist-stretch relations and stretching properties, for short A- and B-helical fragments, are consistent with the opposite behaviors observed in kilo-base long molecules.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核酸中的扭转-拉伸关系。
核酸是高度可变形的螺旋分子,在其生物功能中不断拉伸、扭曲和弯曲。单分子实验表明,双链rna和标准ds- dna在恒定负载下过度缠绕时具有相反的扭曲-拉伸模式和拉伸特性。a型RNA和b型DNA螺旋的关键结构特征在这里被纳入一个三维介观哈密顿模型,该模型解释了碱基对的径向、弯曲和扭转波动。使用对碱基对波动的集合求和的路径积分技术,我计算了分子的平均螺旋重复作为载荷的函数。对于短的A-和b -螺旋片段,得到的扭转-拉伸关系和拉伸性质与在千碱基长分子中观察到的相反行为一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
期刊最新文献
Time-dependent simulation of blood flow through an abdominal aorta with iliac arteries. Extreme enthalpy‒entropy compensation in the dimerization of small solutes in aqueous solution. Application of artificial neural network for the mechano-bactericidal effect of bioinspired nanopatterned surfaces. Structural investigation, computational analysis, and theoretical cryoprotectant approach of antifreeze protein type IV mutants. Computational study on the impact of linkage sequence on the structure and dynamics of lignin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1