Semiparametric single-index models for optimal treatment regimens with censored outcomes.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Lifetime Data Analysis Pub Date : 2022-10-01 DOI:10.1007/s10985-022-09566-4
Jin Wang, Donglin Zeng, D Y Lin
{"title":"Semiparametric single-index models for optimal treatment regimens with censored outcomes.","authors":"Jin Wang,&nbsp;Donglin Zeng,&nbsp;D Y Lin","doi":"10.1007/s10985-022-09566-4","DOIUrl":null,"url":null,"abstract":"<p><p>There is a growing interest in precision medicine, where a potentially censored survival time is often the most important outcome of interest. To discover optimal treatment regimens for such an outcome, we propose a semiparametric proportional hazards model by incorporating the interaction between treatment and a single index of covariates through an unknown monotone link function. This model is flexible enough to allow non-linear treatment-covariate interactions and yet provides a clinically interpretable linear rule for treatment decision. We propose a sieve maximum likelihood estimation approach, under which the baseline hazard function is estimated nonparametrically and the unknown link function is estimated via monotone quadratic B-splines. We show that the resulting estimators are consistent and asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound. The optimal treatment rule follows naturally as a linear combination of the maximum likelihood estimators of the model parameters. Through extensive simulation studies and an application to an AIDS clinical trial, we demonstrate that the treatment rule derived from the single-index model outperforms the treatment rule under the standard Cox proportional hazards model.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"28 4","pages":"744-763"},"PeriodicalIF":1.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349573/pdf/nihms-1913037.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09566-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

There is a growing interest in precision medicine, where a potentially censored survival time is often the most important outcome of interest. To discover optimal treatment regimens for such an outcome, we propose a semiparametric proportional hazards model by incorporating the interaction between treatment and a single index of covariates through an unknown monotone link function. This model is flexible enough to allow non-linear treatment-covariate interactions and yet provides a clinically interpretable linear rule for treatment decision. We propose a sieve maximum likelihood estimation approach, under which the baseline hazard function is estimated nonparametrically and the unknown link function is estimated via monotone quadratic B-splines. We show that the resulting estimators are consistent and asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound. The optimal treatment rule follows naturally as a linear combination of the maximum likelihood estimators of the model parameters. Through extensive simulation studies and an application to an AIDS clinical trial, we demonstrate that the treatment rule derived from the single-index model outperforms the treatment rule under the standard Cox proportional hazards model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有审查结果的最佳治疗方案的半参数单指标模型。
人们对精准医疗的兴趣越来越大,在精准医疗中,可能被删减的生存时间往往是最重要的兴趣结果。为了发现这种结果的最佳治疗方案,我们提出了一个半参数比例风险模型,通过未知单调联系函数将治疗与单个协变量指数之间的相互作用结合起来。该模型足够灵活,允许非线性治疗-协变量相互作用,并为治疗决策提供临床可解释的线性规则。提出了一种筛极大似然估计方法,该方法对基线危险函数进行非参数估计,并通过单调二次b样条估计未知连接函数。我们证明了所得到的估计量是一致的和渐近正态的,并且有一个达到半参数效率界的协方差矩阵。最优处理规则自然是模型参数的最大似然估计量的线性组合。通过广泛的模拟研究和对艾滋病临床试验的应用,我们证明了单指标模型得出的治疗规则优于标准Cox比例风险模型下的治疗规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
期刊最新文献
Conditional modeling of recurrent event data with terminal event. Evaluating time-to-event surrogates for time-to-event true endpoints: an information-theoretic approach based on causal inference. Optimal survival analyses with prevalent and incident patients. Two-stage pseudo maximum likelihood estimation of semiparametric copula-based regression models for semi-competing risks data. Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1