The Fate of 1,8-cineole as a Chemical Penetrant: A Review.

IF 2.8 4区 医学 Q2 PHARMACOLOGY & PHARMACY Current drug delivery Pub Date : 2024-01-01 DOI:10.2174/1567201820666230509101602
Ligema Dao, Yu Dong, Lin Song, Chula Sa
{"title":"The Fate of 1,8-cineole as a Chemical Penetrant: A Review.","authors":"Ligema Dao, Yu Dong, Lin Song, Chula Sa","doi":"10.2174/1567201820666230509101602","DOIUrl":null,"url":null,"abstract":"<p><p>The stratum corneum continues to pose the biggest obstacle to transdermal drug delivery. Chemical penetrant, the first generation of transdermal drug delivery system, offers a lot of potential. In order to fully examine the permeation mechanism of 1,8-cineole, a natural monoterpene, this review summarizes the effects of permeation-enhancing medications on drugs that are lipophilic and hydrophilic as well as the toxicity of this substance on the skin and other tissues. For lower lipophilic drugs, 1,8-cineole appears to have a stronger osmotic-enhancing impact. An efficient and secure tactic would be to combine enhancers and dose forms. 1,8-cineole is anticipated to be further developed in the transdermal drug delivery system and even become a candidate drug for brain transport due to its permeability and low toxicity.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567201820666230509101602","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The stratum corneum continues to pose the biggest obstacle to transdermal drug delivery. Chemical penetrant, the first generation of transdermal drug delivery system, offers a lot of potential. In order to fully examine the permeation mechanism of 1,8-cineole, a natural monoterpene, this review summarizes the effects of permeation-enhancing medications on drugs that are lipophilic and hydrophilic as well as the toxicity of this substance on the skin and other tissues. For lower lipophilic drugs, 1,8-cineole appears to have a stronger osmotic-enhancing impact. An efficient and secure tactic would be to combine enhancers and dose forms. 1,8-cineole is anticipated to be further developed in the transdermal drug delivery system and even become a candidate drug for brain transport due to its permeability and low toxicity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为化学渗透剂的 1,8-蒎烯的命运:综述。
角质层仍然是透皮给药的最大障碍。化学渗透剂作为第一代透皮给药系统,具有很大的潜力。为了全面研究天然单萜类化合物 1,8-蒎烯的渗透机制,本综述总结了渗透促进剂对亲脂性和亲水性药物的影响,以及这种物质对皮肤和其他组织的毒性。对于亲脂性较低的药物,1,8-松油醇似乎具有更强的渗透促进作用。一种有效而安全的方法是将增强剂和剂型结合起来。1,8-ineole 因其渗透性和低毒性,有望在透皮给药系统中得到进一步开发,甚至成为脑部转运的候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current drug delivery
Current drug delivery PHARMACOLOGY & PHARMACY-
CiteScore
5.10
自引率
4.20%
发文量
170
期刊介绍: Current Drug Delivery aims to publish peer-reviewed articles, research articles, short and in-depth reviews, and drug clinical trials studies in the rapidly developing field of drug delivery. Modern drug research aims to build delivery properties of a drug at the design phase, however in many cases this idea cannot be met and the development of delivery systems becomes as important as the development of the drugs themselves. The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance. The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
期刊最新文献
Enhanced Therapeutic Potential of Liposome-Coated Bushen Jianpi Recipe for Hepatocellular Carcinoma Exploring the Insights on Exosomes and their Utility in Treating Ophthalmic Disease: Delving into the Clinical Approval and Present Trials Lignin Nanoparticles as pH-responsive Nanocarriers for Gastric-Irritant Oral Drug Aspirin Lipid Nanoparticles as a Platform for miRNA and siRNA Delivery in Hepatocellular Carcinoma Applications of Inorganic Nanomaterials against Tuberculosis: A Comprehensive Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1