Green Approach Toward Triazole Forming Reactions for Developing Anticancer Drugs.

IF 1.7 4区 化学 Q3 CHEMISTRY, ORGANIC Current organic synthesis Pub Date : 2024-01-01 DOI:10.2174/1570179420666230508125144
Shiva K Rastogi, Veronica C Ciliberto, Monica Z Trevino, Brooke A Campbell, William J Brittain
{"title":"Green Approach Toward Triazole Forming Reactions for Developing Anticancer Drugs.","authors":"Shiva K Rastogi, Veronica C Ciliberto, Monica Z Trevino, Brooke A Campbell, William J Brittain","doi":"10.2174/1570179420666230508125144","DOIUrl":null,"url":null,"abstract":"<p><p>Compounds containing triazole have many significant applications in the dye and ink industry, corrosion inhibitors, polymers, and pharmaceutical industries. These compounds possess many antimicrobial, antioxidant, anticancer, antiviral, anti-HIV, antitubercular, and anticancer activities. Several synthetic methods have been reported for reducing time, minimizing synthetic steps, and utilizing less hazardous and toxic solvents and reagents to improve the yield of triazoles and their analogues synthesis. Among the improvement in methods, green approaches towards triazole forming biologically active compounds, especially anticancer compounds, would be very important for pharmaceutical industries as well as global research community. In this article, we have reviewed the last five years of green chemistry approaches on click reaction between alkyl azide and alkynes to install 1,2,3-triazole moiety in natural products and synthetic drug-like molecules, such as in colchicine, flavanone cardanol, bisphosphonates, thiabendazoles, piperazine, prostanoid, flavonoid, quinoxalines, C-azanucleoside, dibenzylamine, and aryl-azotriazole. The cytotoxicity of triazole hybrid analogues was evaluated against a panel of cancer cell lines, including multidrug-resistant cell lines.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/1570179420666230508125144","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Compounds containing triazole have many significant applications in the dye and ink industry, corrosion inhibitors, polymers, and pharmaceutical industries. These compounds possess many antimicrobial, antioxidant, anticancer, antiviral, anti-HIV, antitubercular, and anticancer activities. Several synthetic methods have been reported for reducing time, minimizing synthetic steps, and utilizing less hazardous and toxic solvents and reagents to improve the yield of triazoles and their analogues synthesis. Among the improvement in methods, green approaches towards triazole forming biologically active compounds, especially anticancer compounds, would be very important for pharmaceutical industries as well as global research community. In this article, we have reviewed the last five years of green chemistry approaches on click reaction between alkyl azide and alkynes to install 1,2,3-triazole moiety in natural products and synthetic drug-like molecules, such as in colchicine, flavanone cardanol, bisphosphonates, thiabendazoles, piperazine, prostanoid, flavonoid, quinoxalines, C-azanucleoside, dibenzylamine, and aryl-azotriazole. The cytotoxicity of triazole hybrid analogues was evaluated against a panel of cancer cell lines, including multidrug-resistant cell lines.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发抗癌药物的三唑形成反应绿色方法
含三唑的化合物在染料和油墨行业、腐蚀抑制剂、聚合物和制药行业有许多重要应用。这些化合物具有多种抗菌、抗氧化、抗癌、抗病毒、抗艾滋病毒、抗结核和抗癌活性。为了缩短三唑及其类似物的合成时间、减少合成步骤、利用危险性和毒性较低的溶剂和试剂来提高合成产量,已有多种合成方法被报道。在这些方法的改进中,绿色方法对制药业和全球研究界来说非常重要,因为这些方法可以生产出具有生物活性的三唑化合物,尤其是抗癌化合物。在本文中,我们回顾了近五年来有关烷基叠氮化物和炔烃通过点击反应在天然产物和合成药物样分子中安装 1,2,3- 三唑分子的绿色化学方法,如秋水仙碱、黄酮贲醇、双磷酸盐、噻苯达唑、哌嗪、类前列腺素、类黄酮、喹喔啉、C-氮核苷、二苄胺和芳基-氮杂三唑。评估了三唑混合类似物对一组癌细胞株(包括耐多药细胞株)的细胞毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current organic synthesis
Current organic synthesis 化学-有机化学
CiteScore
3.40
自引率
5.60%
发文量
86
审稿时长
6-12 weeks
期刊介绍: Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.
期刊最新文献
A Pharmacological Overview and Recent Patent of Triazine Scaffold in Drug Development: A Review Development of a Suitable Method for the Synthesis of New Thiadiazoles Using Hydrazonoyl Halides Synthesis of Heterocyclic Sulfonium Triflates by Cu-Catalyzed Selective Sarylation with Aryl(mesityl)iodonium Salts Co2(CO)8 as a CO-source for Pd-catalyzed Carbonylations: An Update Synthesis and Characterization of Novel Polythiadiazoles from Bis-hydrazonoyl Dichlorides and Bis-(methyl-2-arylidene hydrazone carbodithioates)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1