RNA Folding Based on 5 Beads Model and Multiscale Simulation.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2023-09-01 DOI:10.1007/s12539-023-00561-3
Dinglin Zhang, Lidong Gong, Junben Weng, Yan Li, Anhui Wang, Guohui Li
{"title":"RNA Folding Based on 5 Beads Model and Multiscale Simulation.","authors":"Dinglin Zhang,&nbsp;Lidong Gong,&nbsp;Junben Weng,&nbsp;Yan Li,&nbsp;Anhui Wang,&nbsp;Guohui Li","doi":"10.1007/s12539-023-00561-3","DOIUrl":null,"url":null,"abstract":"<p><p>RNA folding prediction is very meaningful and challenging. The molecular dynamics simulation (MDS) of all atoms (AA) is limited to the folding of small RNA molecules. At present, most of the practical models are coarse grained (CG) model, and the coarse-grained force field (CGFF) parameters usually depend on known RNA structures. However, the limitation of the CGFF is obvious that it is difficult to study the modified RNA. Based on the 3 beads model (AIMS_RNA_B3), we proposed the AIMS_RNA_B5 model with three beads representing a base and two beads representing the main chain (sugar group and phosphate group). We first run the all atom molecular dynamic simulation (AAMDS), and fit the CGFF parameter with the AA trajectory. Then perform the coarse-grained molecular dynamic simulation (CGMDS). AAMDS is the foundation of CGMDS. CGMDS is mainly to carry out the conformation sampling based on the current AAMDS state and improve the folding speed. We simulated the folding of three RNAs, which belong to hairpin, pseudoknot and tRNA respectively. Compared to the AIMS_RNA_B3 model, the AIMS_RNA_B5 model is more reasonable and performs better.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":"15 3","pages":"393-404"},"PeriodicalIF":3.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-023-00561-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

RNA folding prediction is very meaningful and challenging. The molecular dynamics simulation (MDS) of all atoms (AA) is limited to the folding of small RNA molecules. At present, most of the practical models are coarse grained (CG) model, and the coarse-grained force field (CGFF) parameters usually depend on known RNA structures. However, the limitation of the CGFF is obvious that it is difficult to study the modified RNA. Based on the 3 beads model (AIMS_RNA_B3), we proposed the AIMS_RNA_B5 model with three beads representing a base and two beads representing the main chain (sugar group and phosphate group). We first run the all atom molecular dynamic simulation (AAMDS), and fit the CGFF parameter with the AA trajectory. Then perform the coarse-grained molecular dynamic simulation (CGMDS). AAMDS is the foundation of CGMDS. CGMDS is mainly to carry out the conformation sampling based on the current AAMDS state and improve the folding speed. We simulated the folding of three RNAs, which belong to hairpin, pseudoknot and tRNA respectively. Compared to the AIMS_RNA_B3 model, the AIMS_RNA_B5 model is more reasonable and performs better.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于5微珠模型和多尺度模拟的RNA折叠。
RNA折叠预测是非常有意义和挑战性的。全原子(AA)的分子动力学模拟(MDS)仅限于小RNA分子的折叠。目前,大多数实用模型都是粗粒度(CG)模型,而粗粒度力场(CGFF)参数通常依赖于已知的RNA结构。然而,CGFF的局限性很明显,难以对修饰后的RNA进行研究。在3小珠模型(AIMS_RNA_B3)的基础上,我们提出了AIMS_RNA_B5模型,其中3个小珠代表碱基,2个小珠代表主链(糖基和磷酸基)。我们首先进行了全原子分子动力学模拟(AAMDS),并将CGFF参数与AA轨迹拟合。然后进行粗粒度分子动力学模拟(CGMDS)。AAMDS是CGMDS的基础。CGMDS主要是基于当前AAMDS状态进行构象采样,提高折叠速度。我们模拟了三种rna的折叠,它们分别属于发夹、假结和tRNA。与AIMS_RNA_B3模型相比,AIMS_RNA_B5模型更合理,性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
期刊最新文献
Adap-BDCM: Adaptive Bilinear Dynamic Cascade Model for Classification Tasks on CNV Datasets. CVGAE: A Self-Supervised Generative Method for Gene Regulatory Network Inference Using Single-Cell RNA Sequencing Data. Unraveling Brain Synchronisation Dynamics by Explainable Neural Networks using EEG Signals: Application to Dyslexia Diagnosis. Ensemble Machine Learning and Predicted Properties Promote Antimicrobial Peptide Identification. Viral Rebound After Antiviral Treatment: A Mathematical Modeling Study of the Role of Antiviral Mechanism of Action.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1