Qiang Li, Wenhong Liu, Nannan Jing, Qingqing Li, Kang Yang, Jianzhuang Yao, Xia Wang
{"title":"Attack Site Density of a Highly-efficient PET Hydrolases.","authors":"Qiang Li, Wenhong Liu, Nannan Jing, Qingqing Li, Kang Yang, Jianzhuang Yao, Xia Wang","doi":"10.2174/0929866530666230509141807","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Poly (ethylene terephthalate) (PET) is one of the most abundant polyester materials used in daily life and it is also one of the main culprits of environmental pollution. ICCG (F243I/D238C/S283C/Y127G) is an enzyme that performs four modifications on the leaf branch compost keratase (LCC). It shows excellent performance in the hydrolysis of PET and has a great potential in further applications.</p><p><strong>Method: </strong>Here, we used ICCG to degrade PET particles of various sizes and use the density of attack sites (Γ<sub>attack</sub>) and kinetic parameters to evaluate the effect of particle size on enzyme degradation efficiency. We are surprised to observe that there is a certain relationship between K<sub>m</sub> and Γ<sub>attack</sub>. In order to further confirm the relationship, we obtained three different enzymes (Y95K, M166S and H218S) by site-directed mutagenesis on the basis of ICCG.</p><p><strong>Result: </strong>The results confirmed that there was a negative correlation between Km and Γattack. In addition, we also found that increasing the affinity between the enzyme and the substrate does not necessarily lead to the increase of degradation rate.</p><p><strong>Conclusion: </strong>These findings show that the granulation of PET and the selection of appropriate particle size are helpful to improve its industrial application value. At the same time, additional protein engineering to increase ICCG performance is realistic, but it can't be limited to enhance the affinity between enzyme and substrate.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0929866530666230509141807","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Poly (ethylene terephthalate) (PET) is one of the most abundant polyester materials used in daily life and it is also one of the main culprits of environmental pollution. ICCG (F243I/D238C/S283C/Y127G) is an enzyme that performs four modifications on the leaf branch compost keratase (LCC). It shows excellent performance in the hydrolysis of PET and has a great potential in further applications.
Method: Here, we used ICCG to degrade PET particles of various sizes and use the density of attack sites (Γattack) and kinetic parameters to evaluate the effect of particle size on enzyme degradation efficiency. We are surprised to observe that there is a certain relationship between Km and Γattack. In order to further confirm the relationship, we obtained three different enzymes (Y95K, M166S and H218S) by site-directed mutagenesis on the basis of ICCG.
Result: The results confirmed that there was a negative correlation between Km and Γattack. In addition, we also found that increasing the affinity between the enzyme and the substrate does not necessarily lead to the increase of degradation rate.
Conclusion: These findings show that the granulation of PET and the selection of appropriate particle size are helpful to improve its industrial application value. At the same time, additional protein engineering to increase ICCG performance is realistic, but it can't be limited to enhance the affinity between enzyme and substrate.
期刊介绍:
Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations.
Protein & Peptide Letters focuses on:
Structure Studies
Advances in Recombinant Expression
Drug Design
Chemical Synthesis
Function
Pharmacology
Enzymology
Conformational Analysis
Immunology
Biotechnology
Protein Engineering
Protein Folding
Sequencing
Molecular Recognition
Purification and Analysis