Spatial networks and the spread of COVID-19: results and policy implications from Germany.

Matthias Flückiger, Markus Ludwig
{"title":"Spatial networks and the spread of COVID-19: results and policy implications from Germany.","authors":"Matthias Flückiger,&nbsp;Markus Ludwig","doi":"10.1007/s10037-023-00185-6","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial networks are known to be informative about the spatiotemporal transmission dynamics of COVID-19. Using district-level panel data from Germany that cover the first 22 weeks of 2020, we show that mobility, commuter and social networks all predict the spatiotemporal propagation of the epidemic. The main innovation of our approach is that it incorporates the whole network and updated information on case numbers across districts over time. We find that when disease incidence increases in network neighbouring regions, case numbers in the home district surge one week later. The magnitude of these network transmission effects is comparable to within-district transmission, illustrating the importance of networks as drivers of local disease dynamics. After the introduction of containment policies in mid-March, network transmission intensity drops substantially. Our analysis suggests that this reduction is primarily due to a change in quality-not quantity-of interregional movements. This implies that blanket mobility restrictions are not a prerequisite for containing the interregional spread of COVID-19.</p>","PeriodicalId":73531,"journal":{"name":"Jahrbuch fur Regionalwissenschaftt = Review of regional research","volume":"43 1","pages":"1-27"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10183698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jahrbuch fur Regionalwissenschaftt = Review of regional research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10037-023-00185-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial networks are known to be informative about the spatiotemporal transmission dynamics of COVID-19. Using district-level panel data from Germany that cover the first 22 weeks of 2020, we show that mobility, commuter and social networks all predict the spatiotemporal propagation of the epidemic. The main innovation of our approach is that it incorporates the whole network and updated information on case numbers across districts over time. We find that when disease incidence increases in network neighbouring regions, case numbers in the home district surge one week later. The magnitude of these network transmission effects is comparable to within-district transmission, illustrating the importance of networks as drivers of local disease dynamics. After the introduction of containment policies in mid-March, network transmission intensity drops substantially. Our analysis suggests that this reduction is primarily due to a change in quality-not quantity-of interregional movements. This implies that blanket mobility restrictions are not a prerequisite for containing the interregional spread of COVID-19.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间网络与新冠肺炎的传播:来自德国的结果和政策影响。
已知空间网络是关于新冠肺炎时空传播动力学的信息。使用德国2020年前22周的区级面板数据,我们发现流动性、通勤和社交网络都可以预测疫情的时空传播。我们方法的主要创新在于,它整合了整个网络,并随着时间的推移更新了各个地区的病例数信息。我们发现,当网络邻近地区的疾病发病率增加时,一周后家乡地区的病例数就会激增。这些网络传播影响的程度与地区内传播相当,说明了网络作为当地疾病动态驱动因素的重要性。3月中旬出台遏制政策后,网络传播强度大幅下降。我们的分析表明,这种减少主要是由于区域间流动的质量而非数量的变化。这意味着全面的流动限制不是遏制新冠肺炎地区间传播的先决条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aging and regional productivity growth in Germany. COVID-19 and housing prices: evidence from U.S. county-level data. Where do knowledge-intensive firms locate in Germany?-An explanatory framework using exponential random graph modeling. The regional variation of a housing boom. Disparities of land prices in Austria, 2000-2018. Spatial networks and the spread of COVID-19: results and policy implications from Germany.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1