Role of Surface Tension in Microrobot Penetration in Membranes.

Md Mahmudur Rahman, Tanmay Garudadri, Sambeeta Das
{"title":"Role of Surface Tension in Microrobot Penetration in Membranes.","authors":"Md Mahmudur Rahman,&nbsp;Tanmay Garudadri,&nbsp;Sambeeta Das","doi":"10.1109/marss55884.2022.9870474","DOIUrl":null,"url":null,"abstract":"<p><p>cell-membrane fusion using microrobots can be a useful technique for delivering bioactive compounds to cellular systems. The role of membrane curvature and lipid ordering in the cell membrane penetration process is well known. However, once the fusion into the cell membrane is already initiated, the fluid dynamics of microrobot penetration based on tension difference of the microrobot solution and membrane curvature at the fusion pore has not been explored yet. Here, we demonstrate how surface tension difference among merging interfaces plays role in microrobot droplet penetration into a liquid bath, mimicking cell membrane fusion. The maximum penetration of a microrobot droplet into a liquid bath depends on the positive difference of surface tension between the droplet and liquid bath, longitudinal curvature of the bridge region, and the size of the droplet.</p>","PeriodicalId":72027,"journal":{"name":"... International Conference on Manipulation Automation and Robotics at Small Scales (MARSS). International Conference on Manipulation Automation and Robotics at Small Scales","volume":"2022 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387354/pdf/nihms-1917687.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Conference on Manipulation Automation and Robotics at Small Scales (MARSS). International Conference on Manipulation Automation and Robotics at Small Scales","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/marss55884.2022.9870474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

cell-membrane fusion using microrobots can be a useful technique for delivering bioactive compounds to cellular systems. The role of membrane curvature and lipid ordering in the cell membrane penetration process is well known. However, once the fusion into the cell membrane is already initiated, the fluid dynamics of microrobot penetration based on tension difference of the microrobot solution and membrane curvature at the fusion pore has not been explored yet. Here, we demonstrate how surface tension difference among merging interfaces plays role in microrobot droplet penetration into a liquid bath, mimicking cell membrane fusion. The maximum penetration of a microrobot droplet into a liquid bath depends on the positive difference of surface tension between the droplet and liquid bath, longitudinal curvature of the bridge region, and the size of the droplet.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表面张力在微机器人渗透膜中的作用。
利用微型机器人进行细胞膜融合是一种将生物活性化合物输送到细胞系统的有用技术。细胞膜曲率和脂质排序在细胞膜渗透过程中的作用是众所周知的。然而,一旦融合进入细胞膜,基于微机器人溶液的张力差和融合孔处膜曲率的微机器人渗透流体动力学尚未探索。在这里,我们展示了融合界面之间的表面张力差异如何在微机器人液滴渗透到液体浴中,模拟细胞膜融合中发挥作用。微型机器人液滴进入液浴的最大穿透量取决于液滴与液浴之间的表面张力正差、桥区域的纵向曲率以及液滴的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of Surface Tension in Microrobot Penetration in Membranes. A First-Order Approach to Model Simultaneous Control of Multiple Microrobots. Cellular Manipulation Using Rolling Microrobots.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1