首页 > 最新文献

... International Conference on Manipulation Automation and Robotics at Small Scales (MARSS). International Conference on Manipulation Automation and Robotics at Small Scales最新文献

英文 中文
A First-Order Approach to Model Simultaneous Control of Multiple Microrobots. 多微型机器人同时控制的一阶建模方法。
Logan E Beaver, Bingzhi Wu, Sambeeta Das, Andreas A Malikopoulos

The control of swarm systems is relatively well understood for simple robotic platforms at the macro scale. However, there are still several unanswered questions about how similar results can be achieved for microrobots. In this paper, we propose a modeling framework based on a dynamic model of magnetized self-propelling Janus microrobots under a global magnetic field. We verify our model experimentally and provide methods that can aim at accurately describing the behavior of microrobots while modeling their simultaneous control. The model can be generalized to other microrobotic platforms in low Reynolds number environments.

在宏观尺度上,对于简单的机器人平台,群体系统的控制已经得到了比较好的理解。然而,关于如何在微型机器人上实现类似的结果,仍然有几个悬而未决的问题。本文提出了一种基于全局磁场下磁化自推进Janus微型机器人动力学模型的建模框架。我们通过实验验证了我们的模型,并提供了一种方法,可以准确地描述微型机器人的行为,同时模拟它们的同步控制。该模型可推广到其他低雷诺数环境下的微型机器人平台。
{"title":"A First-Order Approach to Model Simultaneous Control of Multiple Microrobots.","authors":"Logan E Beaver,&nbsp;Bingzhi Wu,&nbsp;Sambeeta Das,&nbsp;Andreas A Malikopoulos","doi":"10.1109/marss55884.2022.9870476","DOIUrl":"https://doi.org/10.1109/marss55884.2022.9870476","url":null,"abstract":"<p><p>The control of swarm systems is relatively well understood for simple robotic platforms at the macro scale. However, there are still several unanswered questions about how similar results can be achieved for microrobots. In this paper, we propose a modeling framework based on a dynamic model of magnetized self-propelling Janus microrobots under a global magnetic field. We verify our model experimentally and provide methods that can aim at accurately describing the behavior of microrobots while modeling their simultaneous control. The model can be generalized to other microrobotic platforms in low Reynolds number environments.</p>","PeriodicalId":72027,"journal":{"name":"... International Conference on Manipulation Automation and Robotics at Small Scales (MARSS). International Conference on Manipulation Automation and Robotics at Small Scales","volume":"2022 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474613/pdf/nihms-1917688.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10151363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Cellular Manipulation Using Rolling Microrobots. 使用滚动微型机器人进行细胞操作。
David Rivas, Sudipta Mallick, Max Sokolich, Sambeeta Das

Many biomedical applications, such as targeted drug delivery or cell manipulation, are well suited for the deployment of microrobots, untethered devices that are capable of carrying out tasks at the microscale. One biocompatible means of driving microrobots relies on magnetic actuation. In particular, microrobots driven using rotating fields rather than magnetic field gradients are especially practical for real-word applications. Many biological applications involve enclosed environments, such as blood vessels, in which surfaces are abundant, therefore, surface rolling is a particularly pertinent method of transportation. In this paper we demonstrate manipulation and transportation of cells using two types of magnetically driven rolling microrobots. We find that the microrobots are able to manipulate the cells by physically pushing or by first adhering to the cells and then carrying them. Microrobots spinning at high rates also can transport cells via the induced fluid flows.

许多生物医学应用,如靶向药物输送或细胞操作,都非常适合部署微型机器人,这种不受束缚的设备能够在微观尺度上执行任务。驱动微型机器人的一种生物相容性方法依赖于磁致动。特别是,使用旋转磁场而不是磁场梯度驱动的微型机器人在实际应用中特别实用。许多生物应用涉及封闭环境,如血管,其中表面丰富,因此,表面滚动是一种特别合适的运输方法。在本文中,我们演示了使用两种类型的磁驱动滚动微型机器人操纵和运输细胞。我们发现微型机器人能够通过物理推动或首先附着在细胞上然后携带它们来操纵细胞。高速旋转的微型机器人也可以通过诱导的流体流动来运输细胞。
{"title":"Cellular Manipulation Using Rolling Microrobots.","authors":"David Rivas,&nbsp;Sudipta Mallick,&nbsp;Max Sokolich,&nbsp;Sambeeta Das","doi":"10.1109/marss55884.2022.9870486","DOIUrl":"https://doi.org/10.1109/marss55884.2022.9870486","url":null,"abstract":"<p><p>Many biomedical applications, such as targeted drug delivery or cell manipulation, are well suited for the deployment of microrobots, untethered devices that are capable of carrying out tasks at the microscale. One biocompatible means of driving microrobots relies on magnetic actuation. In particular, microrobots driven using rotating fields rather than magnetic field gradients are especially practical for real-word applications. Many biological applications involve enclosed environments, such as blood vessels, in which surfaces are abundant, therefore, surface rolling is a particularly pertinent method of transportation. In this paper we demonstrate manipulation and transportation of cells using two types of magnetically driven rolling microrobots. We find that the microrobots are able to manipulate the cells by physically pushing or by first adhering to the cells and then carrying them. Microrobots spinning at high rates also can transport cells via the induced fluid flows.</p>","PeriodicalId":72027,"journal":{"name":"... International Conference on Manipulation Automation and Robotics at Small Scales (MARSS). International Conference on Manipulation Automation and Robotics at Small Scales","volume":"2022 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474612/pdf/nihms-1917689.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10151368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Role of Surface Tension in Microrobot Penetration in Membranes. 表面张力在微机器人渗透膜中的作用。
Md Mahmudur Rahman, Tanmay Garudadri, Sambeeta Das

cell-membrane fusion using microrobots can be a useful technique for delivering bioactive compounds to cellular systems. The role of membrane curvature and lipid ordering in the cell membrane penetration process is well known. However, once the fusion into the cell membrane is already initiated, the fluid dynamics of microrobot penetration based on tension difference of the microrobot solution and membrane curvature at the fusion pore has not been explored yet. Here, we demonstrate how surface tension difference among merging interfaces plays role in microrobot droplet penetration into a liquid bath, mimicking cell membrane fusion. The maximum penetration of a microrobot droplet into a liquid bath depends on the positive difference of surface tension between the droplet and liquid bath, longitudinal curvature of the bridge region, and the size of the droplet.

利用微型机器人进行细胞膜融合是一种将生物活性化合物输送到细胞系统的有用技术。细胞膜曲率和脂质排序在细胞膜渗透过程中的作用是众所周知的。然而,一旦融合进入细胞膜,基于微机器人溶液的张力差和融合孔处膜曲率的微机器人渗透流体动力学尚未探索。在这里,我们展示了融合界面之间的表面张力差异如何在微机器人液滴渗透到液体浴中,模拟细胞膜融合中发挥作用。微型机器人液滴进入液浴的最大穿透量取决于液滴与液浴之间的表面张力正差、桥区域的纵向曲率以及液滴的大小。
{"title":"Role of Surface Tension in Microrobot Penetration in Membranes.","authors":"Md Mahmudur Rahman,&nbsp;Tanmay Garudadri,&nbsp;Sambeeta Das","doi":"10.1109/marss55884.2022.9870474","DOIUrl":"https://doi.org/10.1109/marss55884.2022.9870474","url":null,"abstract":"<p><p>cell-membrane fusion using microrobots can be a useful technique for delivering bioactive compounds to cellular systems. The role of membrane curvature and lipid ordering in the cell membrane penetration process is well known. However, once the fusion into the cell membrane is already initiated, the fluid dynamics of microrobot penetration based on tension difference of the microrobot solution and membrane curvature at the fusion pore has not been explored yet. Here, we demonstrate how surface tension difference among merging interfaces plays role in microrobot droplet penetration into a liquid bath, mimicking cell membrane fusion. The maximum penetration of a microrobot droplet into a liquid bath depends on the positive difference of surface tension between the droplet and liquid bath, longitudinal curvature of the bridge region, and the size of the droplet.</p>","PeriodicalId":72027,"journal":{"name":"... International Conference on Manipulation Automation and Robotics at Small Scales (MARSS). International Conference on Manipulation Automation and Robotics at Small Scales","volume":"2022 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387354/pdf/nihms-1917687.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9916132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
... International Conference on Manipulation Automation and Robotics at Small Scales (MARSS). International Conference on Manipulation Automation and Robotics at Small Scales
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1