... International Conference on Manipulation Automation and Robotics at Small Scales (MARSS). International Conference on Manipulation Automation and Robotics at Small Scales最新文献
Pub Date : 2022-07-01DOI: 10.1109/marss55884.2022.9870476
Logan E Beaver, Bingzhi Wu, Sambeeta Das, Andreas A Malikopoulos
The control of swarm systems is relatively well understood for simple robotic platforms at the macro scale. However, there are still several unanswered questions about how similar results can be achieved for microrobots. In this paper, we propose a modeling framework based on a dynamic model of magnetized self-propelling Janus microrobots under a global magnetic field. We verify our model experimentally and provide methods that can aim at accurately describing the behavior of microrobots while modeling their simultaneous control. The model can be generalized to other microrobotic platforms in low Reynolds number environments.
{"title":"A First-Order Approach to Model Simultaneous Control of Multiple Microrobots.","authors":"Logan E Beaver, Bingzhi Wu, Sambeeta Das, Andreas A Malikopoulos","doi":"10.1109/marss55884.2022.9870476","DOIUrl":"https://doi.org/10.1109/marss55884.2022.9870476","url":null,"abstract":"<p><p>The control of swarm systems is relatively well understood for simple robotic platforms at the macro scale. However, there are still several unanswered questions about how similar results can be achieved for microrobots. In this paper, we propose a modeling framework based on a dynamic model of magnetized self-propelling Janus microrobots under a global magnetic field. We verify our model experimentally and provide methods that can aim at accurately describing the behavior of microrobots while modeling their simultaneous control. The model can be generalized to other microrobotic platforms in low Reynolds number environments.</p>","PeriodicalId":72027,"journal":{"name":"... International Conference on Manipulation Automation and Robotics at Small Scales (MARSS). International Conference on Manipulation Automation and Robotics at Small Scales","volume":"2022 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474613/pdf/nihms-1917688.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10151363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-01DOI: 10.1109/marss55884.2022.9870486
David Rivas, Sudipta Mallick, Max Sokolich, Sambeeta Das
Many biomedical applications, such as targeted drug delivery or cell manipulation, are well suited for the deployment of microrobots, untethered devices that are capable of carrying out tasks at the microscale. One biocompatible means of driving microrobots relies on magnetic actuation. In particular, microrobots driven using rotating fields rather than magnetic field gradients are especially practical for real-word applications. Many biological applications involve enclosed environments, such as blood vessels, in which surfaces are abundant, therefore, surface rolling is a particularly pertinent method of transportation. In this paper we demonstrate manipulation and transportation of cells using two types of magnetically driven rolling microrobots. We find that the microrobots are able to manipulate the cells by physically pushing or by first adhering to the cells and then carrying them. Microrobots spinning at high rates also can transport cells via the induced fluid flows.
{"title":"Cellular Manipulation Using Rolling Microrobots.","authors":"David Rivas, Sudipta Mallick, Max Sokolich, Sambeeta Das","doi":"10.1109/marss55884.2022.9870486","DOIUrl":"https://doi.org/10.1109/marss55884.2022.9870486","url":null,"abstract":"<p><p>Many biomedical applications, such as targeted drug delivery or cell manipulation, are well suited for the deployment of microrobots, untethered devices that are capable of carrying out tasks at the microscale. One biocompatible means of driving microrobots relies on magnetic actuation. In particular, microrobots driven using rotating fields rather than magnetic field gradients are especially practical for real-word applications. Many biological applications involve enclosed environments, such as blood vessels, in which surfaces are abundant, therefore, surface rolling is a particularly pertinent method of transportation. In this paper we demonstrate manipulation and transportation of cells using two types of magnetically driven rolling microrobots. We find that the microrobots are able to manipulate the cells by physically pushing or by first adhering to the cells and then carrying them. Microrobots spinning at high rates also can transport cells via the induced fluid flows.</p>","PeriodicalId":72027,"journal":{"name":"... International Conference on Manipulation Automation and Robotics at Small Scales (MARSS). International Conference on Manipulation Automation and Robotics at Small Scales","volume":"2022 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474612/pdf/nihms-1917689.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10151368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-01DOI: 10.1109/marss55884.2022.9870474
Md Mahmudur Rahman, Tanmay Garudadri, Sambeeta Das
cell-membrane fusion using microrobots can be a useful technique for delivering bioactive compounds to cellular systems. The role of membrane curvature and lipid ordering in the cell membrane penetration process is well known. However, once the fusion into the cell membrane is already initiated, the fluid dynamics of microrobot penetration based on tension difference of the microrobot solution and membrane curvature at the fusion pore has not been explored yet. Here, we demonstrate how surface tension difference among merging interfaces plays role in microrobot droplet penetration into a liquid bath, mimicking cell membrane fusion. The maximum penetration of a microrobot droplet into a liquid bath depends on the positive difference of surface tension between the droplet and liquid bath, longitudinal curvature of the bridge region, and the size of the droplet.
{"title":"Role of Surface Tension in Microrobot Penetration in Membranes.","authors":"Md Mahmudur Rahman, Tanmay Garudadri, Sambeeta Das","doi":"10.1109/marss55884.2022.9870474","DOIUrl":"https://doi.org/10.1109/marss55884.2022.9870474","url":null,"abstract":"<p><p>cell-membrane fusion using microrobots can be a useful technique for delivering bioactive compounds to cellular systems. The role of membrane curvature and lipid ordering in the cell membrane penetration process is well known. However, once the fusion into the cell membrane is already initiated, the fluid dynamics of microrobot penetration based on tension difference of the microrobot solution and membrane curvature at the fusion pore has not been explored yet. Here, we demonstrate how surface tension difference among merging interfaces plays role in microrobot droplet penetration into a liquid bath, mimicking cell membrane fusion. The maximum penetration of a microrobot droplet into a liquid bath depends on the positive difference of surface tension between the droplet and liquid bath, longitudinal curvature of the bridge region, and the size of the droplet.</p>","PeriodicalId":72027,"journal":{"name":"... International Conference on Manipulation Automation and Robotics at Small Scales (MARSS). International Conference on Manipulation Automation and Robotics at Small Scales","volume":"2022 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387354/pdf/nihms-1917687.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9916132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
... International Conference on Manipulation Automation and Robotics at Small Scales (MARSS). International Conference on Manipulation Automation and Robotics at Small Scales