Barış Genç, Kerim Aslan, Ali Özçağlayan, Lütfi İncesu
{"title":"Microstructural Abnormalities in the Contralateral Normal-appearing White Matter of Glioblastoma Patients Evaluated with Advanced Diffusion Imaging.","authors":"Barış Genç, Kerim Aslan, Ali Özçağlayan, Lütfi İncesu","doi":"10.2463/mrms.mp.2023-0054","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Glioblastoma patients develop recurrence in the opposite hemisphere far from the primary tumor site even after complete resection. This is one of the main reasons for short disease survival. Our aim in this study is to detect microstructural changes in the contralateral hemisphere of glioblastoma patients using different diffusion models with the fully automated tract-based spatial statistics (TBSS) method.</p><p><strong>Methods: </strong>Fourteen right-sided and eleven left-sided glioblastoma patients without any treatment and eighteen age- and gender-matched controls were included in the study. Multi-shell diffusion weighted images were created with a 3T MRI device. After various preprocessing steps, images of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), axial kurtosis (AK), mean kurtosis (MK), radial kurtosis (RK), intracellular volume fraction (ICVF), orientation dispersion index (ODI), and isotropic water fraction (ISO) were obtained. TBSS was used to compare diffusion tensor imaging, diffusion kurtosis imaging, and neurite orientation dispersion and density imaging parameters of right- and left-sided glioblastoma patients with the control group for the contralateral hemisphere.</p><p><strong>Results: </strong>Both right-sided and left-sided glioblastoma patients have shown an increase in MD and ODI in the contralateral hemisphere. While right-sided glioblastoma patients showed an increase in RD, AD, and ISO in a more limited area in the contralateral hemisphere, left-sided glioblastoma patients showed an increase in MK and AK. FA, ICVF, and RK did not show any difference in both groups.</p><p><strong>Conclusion: </strong>There are microstructural changes in the contralateral hemisphere in glioblastoma patients, and these changes differ between right-sided and left-sided glioblastoma patients.</p>","PeriodicalId":18119,"journal":{"name":"Magnetic Resonance in Medical Sciences","volume":" ","pages":"479-486"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447469/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2463/mrms.mp.2023-0054","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Glioblastoma patients develop recurrence in the opposite hemisphere far from the primary tumor site even after complete resection. This is one of the main reasons for short disease survival. Our aim in this study is to detect microstructural changes in the contralateral hemisphere of glioblastoma patients using different diffusion models with the fully automated tract-based spatial statistics (TBSS) method.
Methods: Fourteen right-sided and eleven left-sided glioblastoma patients without any treatment and eighteen age- and gender-matched controls were included in the study. Multi-shell diffusion weighted images were created with a 3T MRI device. After various preprocessing steps, images of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), axial kurtosis (AK), mean kurtosis (MK), radial kurtosis (RK), intracellular volume fraction (ICVF), orientation dispersion index (ODI), and isotropic water fraction (ISO) were obtained. TBSS was used to compare diffusion tensor imaging, diffusion kurtosis imaging, and neurite orientation dispersion and density imaging parameters of right- and left-sided glioblastoma patients with the control group for the contralateral hemisphere.
Results: Both right-sided and left-sided glioblastoma patients have shown an increase in MD and ODI in the contralateral hemisphere. While right-sided glioblastoma patients showed an increase in RD, AD, and ISO in a more limited area in the contralateral hemisphere, left-sided glioblastoma patients showed an increase in MK and AK. FA, ICVF, and RK did not show any difference in both groups.
Conclusion: There are microstructural changes in the contralateral hemisphere in glioblastoma patients, and these changes differ between right-sided and left-sided glioblastoma patients.
期刊介绍:
Magnetic Resonance in Medical Sciences (MRMS or Magn
Reson Med Sci) is an international journal pursuing the
publication of original articles contributing to the progress
of magnetic resonance in the field of biomedical sciences
including technical developments and clinical applications.
MRMS is an official journal of the Japanese Society for
Magnetic Resonance in Medicine (JSMRM).