Nadia Sufdar Ali , Fang Huang , Wensheng Qin , Trent Chunzhong Yang PhD
{"title":"一种高通量筛选方法及从大量天然生物质中快速分离新型木质素降解微生物","authors":"Nadia Sufdar Ali , Fang Huang , Wensheng Qin , Trent Chunzhong Yang PhD","doi":"10.1016/j.btre.2023.e00809","DOIUrl":null,"url":null,"abstract":"<div><p>High throughput screening approaches can significantly speed up the identification of novel enzymes from natural microbial consortiums. A two-step high throughput screening process was proposed and explored to screen lignin-degrading microorganisms. By employing this modified culture enrichment method and screening based on enzyme activity, a total of 82 bacterial and 46 fungal strains were isolated from fifty decayed wood samples (100 liquid cultures) collected from the banks of the Ottawa River in Canada. Among them, ten bacterial and five fungal strains were selected and identified based on their high laccase activities by 16S rDNA and ITS gene sequencing, respectively. The study identified bacterial strains from various genera including <em>Serratia, Enterobacter, Raoultella</em>, and <em>Bacillus</em>, along with fungal counterparts including <em>Mucor, Trametes, Conifera</em> and <em>Aspergillus</em>. Moreover, <em>Aspergillus sydowii</em> (AORF21), <em>Mucor sp</em>. (AORF43), <em>Trametes versicolor</em> (AORF3) and <em>Enterobacter</em> sp. (AORB55) exhibited xylanase and <em>β</em>- glucanase activities in addition to laccase production. The proposed approach allowed for the quick identification of promising consortia and enhanced the chance of isolating desired strains based on desired enzyme activities. This method is not limited to lignocellulose and lignin-degrading microorganisms but can be applied to identify novel microbial strains and enzymes from different natural samples.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"39 ","pages":"Article e00809"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3e/c3/main.PMC10423689.pdf","citationCount":"0","resultStr":"{\"title\":\"A high throughput screening process and quick isolation of novel lignin-degrading microbes from large number of natural biomasses\",\"authors\":\"Nadia Sufdar Ali , Fang Huang , Wensheng Qin , Trent Chunzhong Yang PhD\",\"doi\":\"10.1016/j.btre.2023.e00809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High throughput screening approaches can significantly speed up the identification of novel enzymes from natural microbial consortiums. A two-step high throughput screening process was proposed and explored to screen lignin-degrading microorganisms. By employing this modified culture enrichment method and screening based on enzyme activity, a total of 82 bacterial and 46 fungal strains were isolated from fifty decayed wood samples (100 liquid cultures) collected from the banks of the Ottawa River in Canada. Among them, ten bacterial and five fungal strains were selected and identified based on their high laccase activities by 16S rDNA and ITS gene sequencing, respectively. The study identified bacterial strains from various genera including <em>Serratia, Enterobacter, Raoultella</em>, and <em>Bacillus</em>, along with fungal counterparts including <em>Mucor, Trametes, Conifera</em> and <em>Aspergillus</em>. Moreover, <em>Aspergillus sydowii</em> (AORF21), <em>Mucor sp</em>. (AORF43), <em>Trametes versicolor</em> (AORF3) and <em>Enterobacter</em> sp. (AORB55) exhibited xylanase and <em>β</em>- glucanase activities in addition to laccase production. The proposed approach allowed for the quick identification of promising consortia and enhanced the chance of isolating desired strains based on desired enzyme activities. This method is not limited to lignocellulose and lignin-degrading microorganisms but can be applied to identify novel microbial strains and enzymes from different natural samples.</p></div>\",\"PeriodicalId\":38117,\"journal\":{\"name\":\"Biotechnology Reports\",\"volume\":\"39 \",\"pages\":\"Article e00809\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3e/c3/main.PMC10423689.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215017X23000292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X23000292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
A high throughput screening process and quick isolation of novel lignin-degrading microbes from large number of natural biomasses
High throughput screening approaches can significantly speed up the identification of novel enzymes from natural microbial consortiums. A two-step high throughput screening process was proposed and explored to screen lignin-degrading microorganisms. By employing this modified culture enrichment method and screening based on enzyme activity, a total of 82 bacterial and 46 fungal strains were isolated from fifty decayed wood samples (100 liquid cultures) collected from the banks of the Ottawa River in Canada. Among them, ten bacterial and five fungal strains were selected and identified based on their high laccase activities by 16S rDNA and ITS gene sequencing, respectively. The study identified bacterial strains from various genera including Serratia, Enterobacter, Raoultella, and Bacillus, along with fungal counterparts including Mucor, Trametes, Conifera and Aspergillus. Moreover, Aspergillus sydowii (AORF21), Mucor sp. (AORF43), Trametes versicolor (AORF3) and Enterobacter sp. (AORB55) exhibited xylanase and β- glucanase activities in addition to laccase production. The proposed approach allowed for the quick identification of promising consortia and enhanced the chance of isolating desired strains based on desired enzyme activities. This method is not limited to lignocellulose and lignin-degrading microorganisms but can be applied to identify novel microbial strains and enzymes from different natural samples.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.