{"title":"MIR31在声带伤口愈合过程中的促进作用。","authors":"Haizhou Wang, Wen Xu","doi":"10.1155/2023/4672827","DOIUrl":null,"url":null,"abstract":"<p><p>The role of MIR31 in the wound healing process, specifically in vocal fold wound healing (VFWH), remains uncertain despite its potential to facilitate the process. In this study, we first constructed a literature-based pathway to examine both the positive and negative effects of MIR31 on wound healing. We then conducted animal experiments on 20 rats to investigate MIR31 expression at different time points (1, 4, and 8 weeks) after vocal fold injury. Co-expression analysis and pathway analysis were performed to explore the potential function of MIR31 in VFWH. The literature-based pathway suggested that MIR31 could both impede and promote the wound healing process by regulating 14 and 47 wound healing upstream regulators, respectively. However, the rat experiment indicated that MIR31 expression significantly increased after vocal fold injury (<i>p</i> < 5.65 × 10<sup>-5</sup>) but decreased in the late stage of VFWH compared with the early and middle stages (<i>p</i> < 5.40 × 10<sup>-3</sup>. Strong co-expression was observed between MIR31 and 17 VFWH-significant genes (Pearson correlation coefficient ∈ (0.63, 0.83)), primarily involved in collagen production. Overall, our findings suggest that MIR31 plays a critical role in VFWH, particularly in collagen synthesis and other biological processes, which warrant further investigation.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2023 ","pages":"4672827"},"PeriodicalIF":3.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427237/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Promotion Role of MIR31 in the Process of Vocal Fold Wound Healing.\",\"authors\":\"Haizhou Wang, Wen Xu\",\"doi\":\"10.1155/2023/4672827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The role of MIR31 in the wound healing process, specifically in vocal fold wound healing (VFWH), remains uncertain despite its potential to facilitate the process. In this study, we first constructed a literature-based pathway to examine both the positive and negative effects of MIR31 on wound healing. We then conducted animal experiments on 20 rats to investigate MIR31 expression at different time points (1, 4, and 8 weeks) after vocal fold injury. Co-expression analysis and pathway analysis were performed to explore the potential function of MIR31 in VFWH. The literature-based pathway suggested that MIR31 could both impede and promote the wound healing process by regulating 14 and 47 wound healing upstream regulators, respectively. However, the rat experiment indicated that MIR31 expression significantly increased after vocal fold injury (<i>p</i> < 5.65 × 10<sup>-5</sup>) but decreased in the late stage of VFWH compared with the early and middle stages (<i>p</i> < 5.40 × 10<sup>-3</sup>. Strong co-expression was observed between MIR31 and 17 VFWH-significant genes (Pearson correlation coefficient ∈ (0.63, 0.83)), primarily involved in collagen production. Overall, our findings suggest that MIR31 plays a critical role in VFWH, particularly in collagen synthesis and other biological processes, which warrant further investigation.</p>\",\"PeriodicalId\":20439,\"journal\":{\"name\":\"PPAR Research\",\"volume\":\"2023 \",\"pages\":\"4672827\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427237/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PPAR Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4672827\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PPAR Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/4672827","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
A Promotion Role of MIR31 in the Process of Vocal Fold Wound Healing.
The role of MIR31 in the wound healing process, specifically in vocal fold wound healing (VFWH), remains uncertain despite its potential to facilitate the process. In this study, we first constructed a literature-based pathway to examine both the positive and negative effects of MIR31 on wound healing. We then conducted animal experiments on 20 rats to investigate MIR31 expression at different time points (1, 4, and 8 weeks) after vocal fold injury. Co-expression analysis and pathway analysis were performed to explore the potential function of MIR31 in VFWH. The literature-based pathway suggested that MIR31 could both impede and promote the wound healing process by regulating 14 and 47 wound healing upstream regulators, respectively. However, the rat experiment indicated that MIR31 expression significantly increased after vocal fold injury (p < 5.65 × 10-5) but decreased in the late stage of VFWH compared with the early and middle stages (p < 5.40 × 10-3. Strong co-expression was observed between MIR31 and 17 VFWH-significant genes (Pearson correlation coefficient ∈ (0.63, 0.83)), primarily involved in collagen production. Overall, our findings suggest that MIR31 plays a critical role in VFWH, particularly in collagen synthesis and other biological processes, which warrant further investigation.
期刊介绍:
PPAR Research is a peer-reviewed, Open Access journal that publishes original research and review articles on advances in basic research focusing on mechanisms involved in the activation of peroxisome proliferator-activated receptors (PPARs), as well as their role in the regulation of cellular differentiation, development, energy homeostasis and metabolic function. The journal also welcomes preclinical and clinical trials of drugs that can modulate PPAR activity, with a view to treating chronic diseases and disorders such as dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, and obesity.