Syed Jahangir Badashah, Shaik Shafiulla Basha, Shaik Rafi Ahamed, S P V Subba Rao, M Janardhan Raju, Mudda Mallikarjun
{"title":"Taylor-Gorilla部队优化了深度学习网络用于表面粗糙度估计。","authors":"Syed Jahangir Badashah, Shaik Shafiulla Basha, Shaik Rafi Ahamed, S P V Subba Rao, M Janardhan Raju, Mudda Mallikarjun","doi":"10.1080/0954898X.2023.2237587","DOIUrl":null,"url":null,"abstract":"<p><p>In order to guarantee the desired quality of machined products, a reliable surface roughness assessment is essential. Using a surface profile metre with a contact stylus, which can produce accurate measurements of surface profiles, is the most popular technique for determining the surface roughness of machined items. One of the limitations of this technique is the work piece surface degradation brought on by mechanical contact between the stylus and the surface. Hence, in this paper, a roughness assessment technique based on the suggested Taylor-Gorilla troops optimizer-based Deep Neuro-Fuzzy Network (Taylor-GTO based DNFN) is proposed for estimating the surface roughness. Pre-processing, data augmentation, feature extraction, feature fusion, and roughness estimation are the procedures that the suggested technique uses to complete the roughness estimate procedure. Roughness estimation is performed using DNFN that has been trained using Taylor-GTO, which was created by combining the Taylor series with the Gorilla troop's optimizer. The created Taylor-GTO based DNFN model has minimum Mean Absolute Error, Mean Square Error, and RMSE of 0.403, 0.416, and 1.149, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"221-249"},"PeriodicalIF":1.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taylor-Gorilla troops optimized deep learning network for surface roughness estimation.\",\"authors\":\"Syed Jahangir Badashah, Shaik Shafiulla Basha, Shaik Rafi Ahamed, S P V Subba Rao, M Janardhan Raju, Mudda Mallikarjun\",\"doi\":\"10.1080/0954898X.2023.2237587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to guarantee the desired quality of machined products, a reliable surface roughness assessment is essential. Using a surface profile metre with a contact stylus, which can produce accurate measurements of surface profiles, is the most popular technique for determining the surface roughness of machined items. One of the limitations of this technique is the work piece surface degradation brought on by mechanical contact between the stylus and the surface. Hence, in this paper, a roughness assessment technique based on the suggested Taylor-Gorilla troops optimizer-based Deep Neuro-Fuzzy Network (Taylor-GTO based DNFN) is proposed for estimating the surface roughness. Pre-processing, data augmentation, feature extraction, feature fusion, and roughness estimation are the procedures that the suggested technique uses to complete the roughness estimate procedure. Roughness estimation is performed using DNFN that has been trained using Taylor-GTO, which was created by combining the Taylor series with the Gorilla troop's optimizer. The created Taylor-GTO based DNFN model has minimum Mean Absolute Error, Mean Square Error, and RMSE of 0.403, 0.416, and 1.149, respectively.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"221-249\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2023.2237587\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2237587","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Taylor-Gorilla troops optimized deep learning network for surface roughness estimation.
In order to guarantee the desired quality of machined products, a reliable surface roughness assessment is essential. Using a surface profile metre with a contact stylus, which can produce accurate measurements of surface profiles, is the most popular technique for determining the surface roughness of machined items. One of the limitations of this technique is the work piece surface degradation brought on by mechanical contact between the stylus and the surface. Hence, in this paper, a roughness assessment technique based on the suggested Taylor-Gorilla troops optimizer-based Deep Neuro-Fuzzy Network (Taylor-GTO based DNFN) is proposed for estimating the surface roughness. Pre-processing, data augmentation, feature extraction, feature fusion, and roughness estimation are the procedures that the suggested technique uses to complete the roughness estimate procedure. Roughness estimation is performed using DNFN that has been trained using Taylor-GTO, which was created by combining the Taylor series with the Gorilla troop's optimizer. The created Taylor-GTO based DNFN model has minimum Mean Absolute Error, Mean Square Error, and RMSE of 0.403, 0.416, and 1.149, respectively.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.