临床前超声心动图的标准化和未来。

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Mammalian Genome Pub Date : 2023-06-01 Epub Date: 2023-05-09 DOI:10.1007/s00335-023-09981-4
Caroline E O'Riordan, Philippe Trochet, Magdelena Steiner, Dieter Fuchs
{"title":"临床前超声心动图的标准化和未来。","authors":"Caroline E O'Riordan, Philippe Trochet, Magdelena Steiner, Dieter Fuchs","doi":"10.1007/s00335-023-09981-4","DOIUrl":null,"url":null,"abstract":"<p><p>Echocardiography is a non-invasive imaging technique providing real-time information to assess the structure and function of the heart. Due to advancements in technology, ultra-high-frequency transducers have enabled the translation of ultrasound from humans to small animals due to resolutions down to 30 µm. Most studies are performed using mice and rats, with ages ranging from embryonic, to neonatal, and adult. In addition, alternative models such as zebrafish and chicken embryos are becoming more frequently used. With the achieved high temporal and spatial resolution in real-time, cardiac function can now be monitored throughout the lifespan of these small animals to investigate the origin and treatment of a range of acute and chronic pathological conditions. With the increased relevance of in vivo real-time imaging, there is still an unmet need for the standardisation of small animal echocardiography and the appropriate cardiac measurements that should be reported in preclinical cardiac models. This review focuses on the development of standardisation in preclinical echocardiography and reports appropriate cardiac measurements throughout the lifespan of rodents: embryonic, neonatal, ageing, and acute and chronic pathologies. Lastly, we will discuss the future of cardiac preclinical ultrasound.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Standardisation and future of preclinical echocardiography.\",\"authors\":\"Caroline E O'Riordan, Philippe Trochet, Magdelena Steiner, Dieter Fuchs\",\"doi\":\"10.1007/s00335-023-09981-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Echocardiography is a non-invasive imaging technique providing real-time information to assess the structure and function of the heart. Due to advancements in technology, ultra-high-frequency transducers have enabled the translation of ultrasound from humans to small animals due to resolutions down to 30 µm. Most studies are performed using mice and rats, with ages ranging from embryonic, to neonatal, and adult. In addition, alternative models such as zebrafish and chicken embryos are becoming more frequently used. With the achieved high temporal and spatial resolution in real-time, cardiac function can now be monitored throughout the lifespan of these small animals to investigate the origin and treatment of a range of acute and chronic pathological conditions. With the increased relevance of in vivo real-time imaging, there is still an unmet need for the standardisation of small animal echocardiography and the appropriate cardiac measurements that should be reported in preclinical cardiac models. This review focuses on the development of standardisation in preclinical echocardiography and reports appropriate cardiac measurements throughout the lifespan of rodents: embryonic, neonatal, ageing, and acute and chronic pathologies. Lastly, we will discuss the future of cardiac preclinical ultrasound.</p>\",\"PeriodicalId\":18259,\"journal\":{\"name\":\"Mammalian Genome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mammalian Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00335-023-09981-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-023-09981-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

超声心动图是一种非侵入性成像技术,提供实时信息来评估心脏的结构和功能。由于技术的进步,超高频换能器已经能够将超声波从人类转化为小动物,因为分辨率低至30微米。大多数研究是用小鼠和大鼠进行的,年龄从胚胎到新生儿和成年。此外,斑马鱼和鸡胚胎等替代模型也被越来越多地使用。随着实时实现高时间和空间分辨率,现在可以在这些小动物的整个生命周期中监测心脏功能,以研究一系列急性和慢性病理状况的起源和治疗。随着体内实时成像相关性的增加,小动物超声心动图的标准化和临床前心脏模型中应报告的适当心脏测量仍然存在未满足的需求。本文综述了临床前超声心动图标准化的发展,并报告了啮齿动物整个生命周期中适当的心脏测量:胚胎、新生儿、衰老、急性和慢性病理。最后,我们将讨论心脏临床前超声的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Standardisation and future of preclinical echocardiography.

Echocardiography is a non-invasive imaging technique providing real-time information to assess the structure and function of the heart. Due to advancements in technology, ultra-high-frequency transducers have enabled the translation of ultrasound from humans to small animals due to resolutions down to 30 µm. Most studies are performed using mice and rats, with ages ranging from embryonic, to neonatal, and adult. In addition, alternative models such as zebrafish and chicken embryos are becoming more frequently used. With the achieved high temporal and spatial resolution in real-time, cardiac function can now be monitored throughout the lifespan of these small animals to investigate the origin and treatment of a range of acute and chronic pathological conditions. With the increased relevance of in vivo real-time imaging, there is still an unmet need for the standardisation of small animal echocardiography and the appropriate cardiac measurements that should be reported in preclinical cardiac models. This review focuses on the development of standardisation in preclinical echocardiography and reports appropriate cardiac measurements throughout the lifespan of rodents: embryonic, neonatal, ageing, and acute and chronic pathologies. Lastly, we will discuss the future of cardiac preclinical ultrasound.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mammalian Genome
Mammalian Genome 生物-生化与分子生物学
CiteScore
4.00
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.
期刊最新文献
EEF1A2 identified as a hub gene associated with the severity of metabolic dysfunction-associated steatotic liver disease. A fascination with tailless mice: a scientific historical review of studies of the T/t complex. Identification of novel biomarkers for atherosclerosis using single-cell RNA sequencing and machine learning. A comprehensive review of livestock development: insights into domestication, phylogenetics, diversity, and genomic advances. Genes related to microglia polarization and immune infiltration in Alzheimer's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1