Bailey Bedard, Brian Hickey, John Chételat, Jan A Mennigen
{"title":"安大略省东部的两种蝙蝠,Myotis lucifugus和Eptesicus fuscus,栖息地使用的变化及其对汞暴露的影响。","authors":"Bailey Bedard, Brian Hickey, John Chételat, Jan A Mennigen","doi":"10.1007/s10646-023-02693-0","DOIUrl":null,"url":null,"abstract":"<p><p>The St. Lawrence River in Eastern Ontario, Canada, has been a designated an area of concern due to past industrial contamination of sediment in some areas and transport of mercury from tributaries. Previous research using bats as sentinel species identified elevated concentrations of total mercury (THg) in fur of local bats and species-specific variation between little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus). Here, we investigated the mercury exposure pathways for these two species by testing the hypothesis that diet variation, particularly the reliance on aquatic over terrestrial insects, is a determinant of local bat mercury concentrations. We analyzed THg concentration and stable isotope ratios of δ<sup>15</sup>N and δ<sup>13</sup>C in fur of little and big brown bats, and in aquatic and terrestrial insects. Big brown bats, especially males, accumulated significantly higher THg concentrations in their fur compared to little brown bats. However, this difference was not related to diet because big brown bats consumed terrestrial insects, which were lower in mercury than aquatic insects, the primary prey for little brown bats. We also evaluated whether fur THg concentrations translate into molecular changes in tissues linked to (methyl)mercury toxicity by quantifying tissue changes in global DNA methylation and mitochondrial DNA abundance. No significant changes in DNA molecular markers were observed in relation to fur THg concentration, suggesting mercury exposure to local bats did not impact molecular level changes at the DNA level. Higher mercury in bats was not associated with local aquatic contamination or genotoxicity in this study area.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"845-857"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation in habitat use and its consequences for mercury exposure in two Eastern Ontario bat species, Myotis lucifugus and Eptesicus fuscus.\",\"authors\":\"Bailey Bedard, Brian Hickey, John Chételat, Jan A Mennigen\",\"doi\":\"10.1007/s10646-023-02693-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The St. Lawrence River in Eastern Ontario, Canada, has been a designated an area of concern due to past industrial contamination of sediment in some areas and transport of mercury from tributaries. Previous research using bats as sentinel species identified elevated concentrations of total mercury (THg) in fur of local bats and species-specific variation between little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus). Here, we investigated the mercury exposure pathways for these two species by testing the hypothesis that diet variation, particularly the reliance on aquatic over terrestrial insects, is a determinant of local bat mercury concentrations. We analyzed THg concentration and stable isotope ratios of δ<sup>15</sup>N and δ<sup>13</sup>C in fur of little and big brown bats, and in aquatic and terrestrial insects. Big brown bats, especially males, accumulated significantly higher THg concentrations in their fur compared to little brown bats. However, this difference was not related to diet because big brown bats consumed terrestrial insects, which were lower in mercury than aquatic insects, the primary prey for little brown bats. We also evaluated whether fur THg concentrations translate into molecular changes in tissues linked to (methyl)mercury toxicity by quantifying tissue changes in global DNA methylation and mitochondrial DNA abundance. No significant changes in DNA molecular markers were observed in relation to fur THg concentration, suggesting mercury exposure to local bats did not impact molecular level changes at the DNA level. Higher mercury in bats was not associated with local aquatic contamination or genotoxicity in this study area.</p>\",\"PeriodicalId\":11497,\"journal\":{\"name\":\"Ecotoxicology\",\"volume\":\" \",\"pages\":\"845-857\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10646-023-02693-0\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-023-02693-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Variation in habitat use and its consequences for mercury exposure in two Eastern Ontario bat species, Myotis lucifugus and Eptesicus fuscus.
The St. Lawrence River in Eastern Ontario, Canada, has been a designated an area of concern due to past industrial contamination of sediment in some areas and transport of mercury from tributaries. Previous research using bats as sentinel species identified elevated concentrations of total mercury (THg) in fur of local bats and species-specific variation between little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus). Here, we investigated the mercury exposure pathways for these two species by testing the hypothesis that diet variation, particularly the reliance on aquatic over terrestrial insects, is a determinant of local bat mercury concentrations. We analyzed THg concentration and stable isotope ratios of δ15N and δ13C in fur of little and big brown bats, and in aquatic and terrestrial insects. Big brown bats, especially males, accumulated significantly higher THg concentrations in their fur compared to little brown bats. However, this difference was not related to diet because big brown bats consumed terrestrial insects, which were lower in mercury than aquatic insects, the primary prey for little brown bats. We also evaluated whether fur THg concentrations translate into molecular changes in tissues linked to (methyl)mercury toxicity by quantifying tissue changes in global DNA methylation and mitochondrial DNA abundance. No significant changes in DNA molecular markers were observed in relation to fur THg concentration, suggesting mercury exposure to local bats did not impact molecular level changes at the DNA level. Higher mercury in bats was not associated with local aquatic contamination or genotoxicity in this study area.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.