{"title":"RNA靶向小分子药物发现:机器学习视角。","authors":"Huan Xiao, Xin Yang, Yihao Zhang, Zongkang Zhang, Ge Zhang, Bao-Ting Zhang","doi":"10.1080/15476286.2023.2223498","DOIUrl":null,"url":null,"abstract":"<p><p>In the past two decades, machine learning (ML) has been extensively adopted in protein-targeted small molecule (SM) discovery. Once trained, ML models could exert their predicting abilities on large volumes of molecules within a short time. However, applying ML approaches to discover RNA-targeted SMs is still in its early stages. This is primarily because of the intrinsic structural instability of RNA molecules that impede the structure-based screening or designing of RNA-targeted SMs. Recently, with more studies revealing RNA structures and a growing number of RNA-targeted ligands being identified, it resulted in an increased interest in the field of drugging RNA. Undeniably, intracellular RNA is much more abundant than protein and, if successfully targeted, will be a major alternative target for therapeutics. Therefore, in this context, as well as under the premise of having RNA-related research data, ML-based methods can get involved in improving the speed of traditional experimental processes. [Figure: see text].</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1b/6e/KRNB_20_2223498.PMC10283424.pdf","citationCount":"0","resultStr":"{\"title\":\"RNA-targeted small-molecule drug discoveries: a machine-learning perspective.\",\"authors\":\"Huan Xiao, Xin Yang, Yihao Zhang, Zongkang Zhang, Ge Zhang, Bao-Ting Zhang\",\"doi\":\"10.1080/15476286.2023.2223498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the past two decades, machine learning (ML) has been extensively adopted in protein-targeted small molecule (SM) discovery. Once trained, ML models could exert their predicting abilities on large volumes of molecules within a short time. However, applying ML approaches to discover RNA-targeted SMs is still in its early stages. This is primarily because of the intrinsic structural instability of RNA molecules that impede the structure-based screening or designing of RNA-targeted SMs. Recently, with more studies revealing RNA structures and a growing number of RNA-targeted ligands being identified, it resulted in an increased interest in the field of drugging RNA. Undeniably, intracellular RNA is much more abundant than protein and, if successfully targeted, will be a major alternative target for therapeutics. Therefore, in this context, as well as under the premise of having RNA-related research data, ML-based methods can get involved in improving the speed of traditional experimental processes. [Figure: see text].</p>\",\"PeriodicalId\":21351,\"journal\":{\"name\":\"RNA Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1b/6e/KRNB_20_2223498.PMC10283424.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15476286.2023.2223498\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2023.2223498","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在过去二十年里,机器学习(ML)被广泛应用于蛋白质靶向小分子(SM)的发现。一旦经过训练,ML 模型可以在短时间内对大量分子发挥预测能力。然而,应用 ML 方法发现 RNA 靶向 SM 仍处于早期阶段。这主要是因为 RNA 分子固有的结构不稳定性阻碍了基于结构筛选或设计 RNA 靶向 SMs。近来,随着越来越多的研究揭示了 RNA 结构,越来越多的 RNA 靶向配体被发现,人们对 RNA 药物领域的兴趣日益浓厚。不可否认,细胞内 RNA 的含量远高于蛋白质,如果成功靶向,将成为治疗药物的主要替代靶点。因此,在这种情况下,以及在拥有 RNA 相关研究数据的前提下,基于 ML 的方法可以参与其中,提高传统实验过程的速度。[图:见正文]
RNA-targeted small-molecule drug discoveries: a machine-learning perspective.
In the past two decades, machine learning (ML) has been extensively adopted in protein-targeted small molecule (SM) discovery. Once trained, ML models could exert their predicting abilities on large volumes of molecules within a short time. However, applying ML approaches to discover RNA-targeted SMs is still in its early stages. This is primarily because of the intrinsic structural instability of RNA molecules that impede the structure-based screening or designing of RNA-targeted SMs. Recently, with more studies revealing RNA structures and a growing number of RNA-targeted ligands being identified, it resulted in an increased interest in the field of drugging RNA. Undeniably, intracellular RNA is much more abundant than protein and, if successfully targeted, will be a major alternative target for therapeutics. Therefore, in this context, as well as under the premise of having RNA-related research data, ML-based methods can get involved in improving the speed of traditional experimental processes. [Figure: see text].
期刊介绍:
RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research.
RNA Biology brings together a multidisciplinary community of scientists working in the areas of:
Transcription and splicing
Post-transcriptional regulation of gene expression
Non-coding RNAs
RNA localization
Translation and catalysis by RNA
Structural biology
Bioinformatics
RNA in disease and therapy